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ABSTRACT 
 

Noncontact anterior cruciate ligament (ACL) injury is a common sports-related injury. 

“High-risk” dynamic movements, such as a sidecut, have been associated with increasing the risk 

of noncontact ACL injury. Certain biomechanical abnormalities, specifically at the hip and knee, 

and neuromuscular abnormalities, such as unbalanced quadriceps-to-hamstrings activation ratios 

and certain activation patterns prior to initial contact and after initial contact, have also been 

associated with an increased likelihood of noncontact ACL injuries occurring. Approximately 

78% of all NCAA Division I softball game-day injuries are classified as noncontact where there 

is no direct contact to a player. Internal derangement of the knee accounted for 221 game day 

injuries, and 31% of these injuries were noncontact ACL injuries. The base runner was at the 

greatest risk of injury, with 28.8% of athletes base running at the time of injury. Additionally, 

9% of base runners, or 187 athletes, were injured while contacting the base. The purpose of this 

study was to determine the effects of a raised surface on lower extremity kinematics, kinetics, 

and muscle activation patterns during a sidecut, simulating rounding first base. Participants 

completed two base conditions – with a base present (WB) and no base (NB) present with a 

controlled entrance and exit speed. Results indicated the only biomechanical difference between 

base conditions was greater peak knee adduction moments in the NB condition compared to the 

WB condition. These findings suggest that the body may be in a better position when a raised 

surface is present during a sidecut and decrease the risk of noncontact ACL injury. Therefore, 

examining movement patterns at the ankle may provide a better explanation for noncontact ACL 

injuries that occur during this time. Regarding muscle activation, there was significantly greater 

quadriceps activation post-contact compared to pre-contact. Significantly greater quadriceps 

activation creates a large anterior shear force on the ACL, increasing risk of injury. 
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CHAPTER 1: 

INTRODUCTION 

 

BACKGROUND 

 The anterior cruciate ligament (ACL) is one of the most important knee ligaments. It 

prevents both excessive anterior tibial translation in relation to the femur, as well as frontal and 

transverse planar tibial rotation about the femur [1, 2]. Unfortunately, almost half of ligamentous 

knee injuries are isolated to the ACL [3]. There are approximately 80,000 to 250,000 ACL 

injuries that occur in the United States each year due to ligament failure from excessive 

loading [4].  

There are two classifications for ACL injuries: contact and noncontact. Both types of 

injury can result in a complete tear of the ACL. It has been indicated that both classifications of 

ACL injuries increase the risk for developing early knee osteoarthritis, and within 10-20 years 

after the injury, as many as 50% of individuals will demonstrate radiographic arthritis, 

significant pain, and functional limitations [5]. The mechanism behind contact ACL injuries can 

be easily identified. However, the exact mechanism in a noncontact ACL injury is more difficult 

to identify, which is problematic. Understanding the mechanisms behind these two 

classifications of ACL injuries creates the potential to reduce these types of injury. 

Contact ACL injuries are easily identified because they involve direct player-to-player 

contact, and the mechanism for the injury is known [6]. Alarmingly, noncontact injuries, which 

involve no direct contact, account for approximately 70% of ACL injuries [7]. While there are 

numerous risk factors associated with noncontact ACL injuries, the exact mechanism of how 

these risk factors interact and result in an injury is poorly understood [3, 8, 9]. This lack of 
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understanding regarding how noncontact ACL injury risk factors interact with one another is 

therefore a cause for concern in attempting to reduce the number of noncontact ACL injuries.  

Females are at an increased risk of rupturing the ACL, especially in sporting events, and 

softball is no exception. In NCAA Division I, the total number of softball teams and number of 

female athletes have both increased over the years, with 1003 total teams and 19,628 participants 

by the 2014-2015 season [10]. An increased number of participants results in a potential increase 

in the number of injuries sustained in softball. The body can be broken up into five body parts 

that are injured in softball, and the lower extremity has the highest injury rate [11, 12]. It has 

been found that 8.7% of all game day injuries resulted in internal derangement of the knee, 

equating to 220.719 knee injuries. Thirty-one percent of the 220.719 knee injuries (n = 68.42) 

were classified as noncontact ACL injuries. The base runner has also been found to be at the 

highest risk of injury, with 187.31 game injuries occurring while rounding the base [12]. The 

percentage of noncontact ACL injuries is small compared to other types of injuries that occur to 

the body, but an alarming 88% of noncontact ACL injuries required 10 or more days of time loss 

[11]. Noncontact ACL injuries are not as prevalent in softball as in other sports, but still result in 

a long recovery period and may result in a loss of pre-injury skill level once the athlete returns to 

play. Understanding the mechanism of what is occurring while players are rounding the base can 

potentially reduce noncontact ACL injuries in the sport of softball. 

ACL injuries result from ligament failure. These injuries occur when the load placed on 

the ligament exceeds the maximum failure load the ligament can withstand. Maximum failure 

loads for ACLs on young cadavers have been found to range between 1730 N and 2160 N [13, 

14]. Loading in just one plane does not stress the ligament enough for it to fail. Dynamic 

movements that involve a combination of sagittal, frontal, and transverse loading generate a 
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large force on the ACL that can rupture the ligament [1, 15]. Any type of interactions between 

large anterior shear forces and abnormal frontal and transverse plane knee moments increases the 

chance of injury and is considered a risk factor for noncontact ACL injury [9, 15-17]. 

Specifically, anterior tibial fore plus internal tibial torque near extension, and anterior tibial force 

plus a valgus moment at more than 10 of flexion produced the greatest loading combinations for 

high ACL forces [1]. 

Noncontact ACL injuries occur during movements that involve sudden acceleration or 

deceleration and changes of direction, such as a sidecut, which involves planting on a fixed and 

then cutting in a different direction [3, 18-20]. Most noncontact ACL injuries occur during the 

first 40-100 ms of the plant leg coming into contact with the ground, indicating this as the time 

period where lower extremity abnormalities are more than likely present [21-23]. These 

abnormalities are more than likely caused by either biomechanical factors, neuromuscular 

factors, or a combination of the two.  

Some biomechanical factors that are common in noncontact ACL injuries at initial 

contact are planting with the knee close to full extension (between 0 and 45 knee flexion), 

maximum internal knee rotation, and increased knee abduction angle, all of which tighten the 

ligament and increase the risk of rupture [15, 18, 20, 24-27]. There appears to be a causal link 

between initial contact knee abduction angle and the ensuing load experienced at the knee. 

Abnormal frontal plane alignment especially has the potential to create a vicious cycle of 

harmful ACL loading by creating unfavorable knee abduction angles at initial contact, which in 

turn increases the internal knee adduction moments, and therefore increases the risk for ACL 

injury [28]. Decreased flexion angles and increased abduction angles at the hip can also increase 
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the risk of ACL injury because of the greater load placed on the passive joint restraints to 

stabilize the knee [16, 29].  

Certain neuromuscular factors also play a role in increasing the risk of noncontact ACL 

injury. Two muscle groups are responsible for maintaining the stability of the knee, the 

quadriceps and the hamstrings [24, 30]. During a sidecut, there is high activation of the 

quadriceps. Significantly greater quadriceps activation compared to hamstrings activation has 

been shown to increase the strain on the ACL between full extension and 45 of flexion [31]. 

This activation  results in less knee flexion and a greater anterior pull on the tibia, causing a 

larger anterior tibial shear force on the ACL [2, 32]. The hamstrings act to counteract the 

quadriceps and reduce the strain placed on the ACL, but their function is dependent on the knee 

flexion angle [3, 24]. Between 30-90 of knee flexion, hamstring activity during simultaneous 

quadriceps activity has been shown to significantly reduced the strain on the ACL. However, 

from 0-30of knee flexion, did not significantly reduce the strain on the ACL [31]. The level of 

hamstring activation determines how much the activation of the quadriceps is counterbalanced 

[24]. Because there is normally submaximal hamstring activation, the posteriorly directed shear 

force is not able to reduce the anterior shear force generated by the quadriceps, which therefore 

increases the loads placed on the ACL [33]. Examining co-activation levels of the quadriceps 

and hamstrings and how they compare during the first 100 ms of meeting the ground can aid in 

identifying imbalances between muscle groups. These imbalances can indicate if an individual 

generates large anterior shear forces, which place greater loads at the ACL. Hamstring activation 

levels need to be enough to counteract the quadriceps activation levels in order to reduce these 

loads.  
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There is a significant gender disparity in noncontact ACL injuries. Females are 2-8 times 

more likely to sustain this type of ACL injury [8, 34, 35]. These gender differences in ACL 

injury are also present softball and baseball [11, 36]. The question that arises is why are females 

at a greater risk than males for this type of injury? The two factors most associated with this 

gender disparity are biomechanical and neuromuscular. Females tend to land with decreased 

sagittal plane movement at the knee and hip, which leads to an increased anterior shear force on 

the ACL [27, 32]. McLean et al. [8] explained that differences in the sagittal plane alone do not 

explain the gender disparity, but pairing these differences with frontal plane gender differences 

may help explain the discrepancies in ACL injury between males and females. While females 

land more upright with less knee flexion, they also land with a more medially collapsed knee, 

which creates a much greater internal adduction moment about the knee [32, 35]. The 

combination of these two abnormal planar movements may help explain the injury rate 

differences between genders.  

Females demonstrate greater quadriceps activity compared to hamstring activity during a 

sidecut, which unfortunately creates the debilitating anterior shear force at the knee [17, 20, 27, 

32, 37]. The magnitude of hamstring activation is also decreased in females, which can result in 

decreased hamstring strength because the muscle group is not able to fire efficiently. Decreased 

hamstring strength has been shown to increase the peak load placed on the ACL [33]. The 

posterior shear force created by the hamstrings is not adequately scaled to the anterior shear 

force created by the quadriceps, resulting in an increased strain on the ACL. Because females 

have greater quadriceps activation levels compared to hamstring activation levels, their 

quadriceps-hamstring ratio is much greater than their male counterparts [17]. Again, the 

increased activation of the quadriceps increases the anterior shear force experienced at the knee, 
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increasing the strain on the ACL. Pre-activation levels also differ between genders. Females have 

a higher pre-activation of the quadriceps and lower pre-activation of the hamstrings compared to 

males [17, 34]. These pre-activation levels may help explain why there is a greater reliance on 

the quadriceps than the hamstrings in females at initial contact.  

STATEMENT OF THE PROBLEM 

Previous research has identified a gender discrepancy in noncontact ACL injuries while 

performing a sidecut. However, previous studies seemed to have focused on sports where female 

noncontact ACL injuries are more common, such as soccer, resulting in little research on why 

this type of injury occurs in other sports where it is not so prevalent (i.e. softball). While the 

number of noncontact ACL injuries is not as high in this sport, the amount of time loss is 

substantial. Therefore, analyzing the lower extremity while rounding a base will help aid in 

understanding why ACL injuries occur in female softball players.  

Therefore, the purpose of this study was to determine the effects of including a raised 

surface on the kinematics, kinetics, and electromyography of the lower extremity while 

performing a sidecut, simulating rounding first base. 

RESEARCH HYPOTHESES 

Due to the lack of softball-specific research involving rounding a base, this study was an 

exploratory investigation to see if there were any differences at the hip and knee between the two 

base conditions.  

Based on preliminary data, it was hypothesized that the with base (WB) condition would 

increase known ACL injury risk factors. Regarding EMG data, it was hypothesized that there 

would be greater vastus lateralis (VL) activity compared to vastus medialis (VM) activity, both 

pre-contact and post-contact, regardless of base condition. It was also hypothesized that there 
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would be greater hamstring activation pre-contact, but greater quadriceps activation post-contact, 

again regardless of the base condition.  

INDEPENDENT VARIABLE 

 Base condition – sidecut with no base (NB), sidecut with base (WB) 

DEPENDENT VARIABLES 

 Kinematic variables: 

o Sagittal plane joint angles: 

 Initial contact hip flexion angle 

 Initial contact knee flexion angle 

o Frontal plane joint angles: 

 Initial contact hip adduction angle 

 Initial contact knee abduction angle 

 Peak knee abduction angle 

 Kinetic variables: 

o Sagittal plane joint moments: 

 Peak internal hip extensor moment 

 Peak internal knee extensor moment 

o Frontal plane joint moments: 

 Peak internal hip abduction moment 

 Peak internal knee adduction moment 

 EMG variables: 

o Pre-contact vastus medialis-vastus lateralis co-contraction index 

o Post-contact vastus medialis-vastus lateralis co-contraction index 
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o Pre-contact quadriceps-hamstring co-contraction index 

o Post-contact quadriceps-hamstring co-contraction index 

LIMITATIONS  

 Participant’s entrance speed was controlled. Entrance speeds may vary in real game 

situations, which could affect results of the study. 

 Standard lab shoes were worn during the sidecut instead of the typical cleats worn while 

playing. Therefore, any differences found could not be completely applicable to real 

game play.  

 The participants completed each sidecut on a gym floor instead of a dirt field. Again, any 

differences found in the lab were therefore not completely applicable to real game play. 

DELIMITATIONS  

 The participants’ age range was from 18-25 years old.  

 Participants must have had a minimum of two years high school softball experience to 

ensure they were familiar with how to properly round the base.  

 Participants must have been recreationally active at least three days per week, for a 

minimum of 30 minutes during each session. One session must have included dynamic 

movements such as running and cutting. 

 Participants who have ever experienced lower extremity injuries that required surgery, 

ever suffered an ACL injury, or suffered a lower extremity injury in the past six months 

were excluded. 

 Any participant who experienced knee pain on the day of data collection was excluded.  



www.manaraa.com

 

9 

 

 
ASSUMPTIONS  

 The twelve-camera infrared motion capture system (Vicon Motion Analysis, Inc., 

Centennial, CO, USA) and one force platform (BP600600, Advanced Mechanical 

Technology, Inc., Watertown, MA, USA) were accurately calibrated for each participant 

throughout the study. 

 Participants were truthful while filling out the Lower Extremity Functional Scale. 

 Participants were truthful with their lower extremity injury history and weekly activity 

levels. 

OPERATIONAL DEFINITIONS  

 Noncontact ACL injury was defined as one where there was no person-to-person contact 

to an individual. Coming in contact with a raised surface (i.e. base) was classified as a 

noncontact ACL injury.  

 Joint moments reported were defined as the internal joint moments, which are torques 

that act to resist external torques. For example, an internal knee adduction moment would 

act to resist knee abduction torque created by external loads.  

 Initial contact was defined as the instant where vertical ground reaction force is higher 

than 10 Newtons.  

 The time frame of interest was between 50 ms before initial contact and 100 ms after 

initial contact [21-23]. It has been reported that pre-contact EMG activation levels in 

females can place the ACL at a greater risk of injury. It has also been suggested that the 

time when a noncontact ACL injury occurs is within the first 100 ms of foot contact. 

 The convention used for joint kinematics and kinetics followed the right-hand rule.  

o Hip: flexion (+)/extension (-), adduction (+)/abduction (-) 
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o Knee: flexion (-)/extension (+), adduction (+)/abduction (-)
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CHAPTER 2: 

REVIEW OF THE LITERATURE 

INTRODUCTION 

The purpose of this study is to examine how introducing a raised surface (i.e. a base) 

effects lower extremity kinematics, kinetics, and muscle activation patterns of recreationally 

active female softball players performing a 90 sidecut (simulating rounding first base). This 

chapter reviewed current literature discussing anterior cruciate ligament (ACL) anatomy, ACL 

planar loading mechanisms, biomechanical factors associated with noncontact ACL injuries, 

neuromuscular factors associated with noncontact ACL injuries, the increased noncontact ACL 

injury rate in females, the biomechanical and neuromuscular gender differences in noncontact 

ACL injuries, and the rate of ACL injury in female softball athletes. 

ACL ANATOMY AND LOADING 

ACL ANATOMY 

The ACL is one of the most important knee ligaments and has become an increasing 

interest in numerous studies [1]. Of all the ligamentous knee injuries, almost half are isolated to 

the ACL [3]. The primary role of the ACL is to prevent excessive anterior tibial translation in 

relation to the femur, as well as frontal and transverse plane tibial rotation about the femur. It has 

been found that the ACL provides 87% of the total restraining force to anterior tibial translation 

when the knee is flexed at 30, and provides 85% of the restraining force at 90 of knee flexion 

[38]. On average, the ACL is 38 mm long and 11 mm wide, originates on the medial aspect of 

the lateral femoral condyle, and inserts on the anterior intercondylar area of the tibia. These 

attachment sites aid in the function of the ligament during any sort of movement involving the 

knee. The ACL length-tension relationship is primarily controlled by the attachment site located 
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on the femur, the combination of motions applied to the ACL (flexion, extension, rotation, etc.), 

ACL fiber length when the knee is at rest, and the attachment site locations at the tibia. There has 

been much debate about how the ligament itself is divided. One classification separates the ACL 

fibers into the anteromedial bundle and posterolateral bundle. The anteromedial fibers, anterior 

to the center of the ligament, lengthen while the knee is being flexed. The posterolateral fibers, 

posterior to the center of the ligament, lengthen while the knee is extending. While the two 

bundles seem to work separately in the sagittal plane, when motions are couples together, such as 

a combination of anterior translation and internal tibial rotation, the fibers in both bundles work 

together to resist any tibial displacement [2]. Any lengthening of the ACL increases tension, and 

if this load becomes too great, the ligament has the potential to fail and tear. 

ACL PLANAR LOADING MECHANISMS 

There are approximately 80,000 to 250,000 ACL tears that occur in the United States 

each year [4]. Noyes et al. [13] reported a failure load in young cadaver ligaments (16-26 yrs.) of 

1730 N, and Woo et al. [14] reported a maximum failure load in young cadaver ligaments (22-35 

yrs.) of 2160 N. McLean et al. [8] found that single planar loading mechanisms alone do not 

generate enough force at the ACL for it to rupture. Cadaver studies have shown that dynamic 

movements with a combination of sagittal, frontal, and transverse loading can generate a much 

larger force that can rupture the ACL [1]. Interestingly, Weinhandl et al. [9] found, through 

musculoskeletal modeling, that loading in the sagittal plane during a sidecut contributed to 62% 

of the total load placed on the ACL. This was due to a large anterior shear force from the patellar 

tendon and an increased shear tibiofemoral contact force. However, they also found that the 

frontal and transverse planes contributed the remaining 38% of the total load on the ligament 

(26% in the frontal plane and 12% in the transverse plane), indicating a combined loading on the 
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ACL. It has also been found that internal knee adduction moments of 125-210 Nm in the frontal 

plane and knee internal rotation moments between 35-80 Nm in the transverse plane can 

potentially damage the ligament [39].  

Applying loads individually may not create enough force at the knee for the ligament to 

rupture, but combining loading conditions can generate greater forces at the ligament [1, 15]. 

Because the ACL specifically limits internal tibial rotation and anterior translation, the 

combination of these knee movements have the greatest potential to lead to the failure load of the 

ACL [2]. In a cadaver study conducted by Markolf et al. [1], two specific loading combinations 

were identified that place the highest forces on the ACL and create the greater risks of injury. 

These include anterior tibial force plus internal tibial torque, near knee extension, and anterior 

tibial force plus an internal knee adduction moment, at more than 10 of flexion [1]. If the knee 

experiences any type of movement where there is an interaction or combination of loading from 

more than one plane, specifically an interaction of sagittal plane shear forces with frontal and 

transverse plane knee moments, it is considered a risk factor and has the potential to rupture the 

ACL [9, 15-17]. 

The ACL is one of the most important ligaments in the knee. It is a small ligament in the 

knee responsible for preventing excessive tibial translation and rotation relative to the femur 

during dynamic movements. The ACL is lengthened during these movements, which causes 

increased tension on the ligament. Specific loading combinations at the knee, including anterior 

tibial force and an internal tibial torque with the knee near extension, have the most potential to 

cause ligament failure. Thus, understanding the basic anatomy and loading of the ACL can aid in 

understanding ACL injury mechanisms. 
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ACL INJURY OVERVIEW 

Simply put, an ACL injury occurs when the applied load exceeds the load that the ACL 

can withstand [40]. ACL ruptures can be classified as either contact injuries or noncontact 

injuries. Both are equally devastating to the individual and can increase the risk for developing 

early onset knee osteoarthritis, but the difference between the two is knowing the exact 

mechanism which caused the ligament to rupture. Contact ACL injuries occur when there is 

player-to-player direct contact to the knee, and the mechanisms behind these types of ACL 

injuries are evident when looking at a clinical history of the injury [6]. Unfortunately, 

approximately 70% of ACL injuries involve no direct player contact, and therefore classified as 

noncontact. However, while the cause of contact ACL injuries is known, the exact mechanisms 

involved in noncontact ACL injuries are poorly understood [2, 3, 6, 8, 9]. This lack of 

understanding is cause for concern due to the high number of noncontact ACL injuries. 

Numerous biomechanical studies have identified specific risk factors that have potential to lead 

to ligament failure. Knowing how these risk factors contribute to a noncontact ACL injury 

creates the possibility to reduce the number of noncontact ACL injuries targeted intervention 

strategies.  

BIOMECHANICAL FACTORS OF NONCONTACT ACL INJURY 

Numerous studies have reported that the majority of noncontact ACL ruptures occur 

during dynamic movements that involve sudden acceleration or deceleration and changes of 

direction, such as planting and cutting (sidecut) on a fixed foot, and jump landings, specifically 

landings with straight knees or a single-leg landing [3, 8, 16, 18-20, 23, 28]. Most noncontact 

ACL injuries have been reported to occur during a range of the first 40 to 100 ms of the plant leg 

coming into contact with the flat ground, which implies that there must be some abnormalities 
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that occur at the knee during initial contact [21-23]. These abnormal biomechanics, specifically 

during a cutting movement, include: an anterior shear force, caused by large quadriceps 

contractions that occur with low knee flexion angles and a lack of hamstrings muscle activation, 

axial compression loads, hyperextension, medial collapse at the knee joint, internal tibial 

rotation, or a combination of the previously mentioned risk factors, such as a hyperextended knee 

with internal tibial rotation, or an extended knee with adduction loading [2, 25, 26, 41].  

The sidecut is one of these high-risk dynamic movements that can potentially rupture the 

ACL. The sidecut was proposed to have three distinct phase, which include the preliminary 

deceleration phase, the plant and cut phase, and the take-off [6]. During this first phase, the entire 

body must decelerate, or slow down, in the sagittal plane to prepare for the cut. This phase is also 

where knee flexion occurs so the body can compensate for the increased load being placed on the 

joint. During the plant and cut phase, the body redirects itself by pivoting about the planted foot, 

thus creating a torque at the knee [19]. And finally in the take-off phase, increased knee flexion 

angles enable the body to generate sufficient knee extension torques to propel the body forward 

and complete the cutting movement [6]. Also, in order to do perform this type of movement, the 

body must create a large braking force in the anterior/posterior ground reaction force (GRF) 

component. The size of the cut angle and the entrance speed into the cut determine the 

magnitude of this GRF, which occurs during the first 25% of deceleration phase [18, 42]. The 

magnitude of this braking force indicates how much force is being loaded onto the lower 

extremity, and a greater cut angle, such as a 90 cut angle, would require a much greater force. 

However, this braking force may increase the risk of the ACL rupturing [43]. Understanding 

what is occurring at specific segments and joints is therefore essential in understanding how this 

deceleration component is related to noncontact ACL injuries [19].  
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In an athletic task, such as the sidecut, the individual plants the foot and then twists 

toward the contralateral side with the knee relatively extended. Numerous studies have shown 

that at initial contact, if the knee is near full extension (between 0 and 45 knee flexion), or is at 

maximum internal rotation, along with increased adduction, the ACL will tighten and can be at 

risk for rupturing [15, 18, 20, 25-27, 32]. Having the knee undergo smaller flexion angles, close 

to full extension, suggests that there is greater load absorption in the sagittal plane to 

accommodate the large braking force and peak knee extensor moments, which contribute to the 

increased anterior tibial shear force on the ACL [19]. Weinhandl et al. [9] also found larger 

anterior shear forces in the sagittal plane, which were supplied by the patellar tendon. It should 

seem evident then that increasing the knee flexion angle would reduce this strain on the ligament, 

and has indeed been found to reduce the resultant strain [15]. However, while having a more 

extended knee does increase the load placed on the ACL, through musculoskeletal modeling 

McLean et al. [8] found that peak anterior drawer force was never positive, implying that the 

load placed on the ACL solely in the sagittal plane does not have the potential to rupture the 

ACL. They also introduced random perturbations to their model, which did produced increases 

in the peak anterior drawer during the sidecut, but the forces remained well below the 2000 N 

injury threshold determined by Woo et al. [14]. This indicates that a combination of loading 

mechanisms from all three planes must be linked to ACL injury.  

Sagittal plane loads alone do not increase the risk of an ACL injury, but combining the 

sagittal plane with loads in the frontal and transverse planes may be more likely to contribute to 

injury. In the frontal plane, having the knee collapsing medially creates an unfavorable internal 

knee adduction moment, which increases the risk of ACL injury by tightening the ligament. Not 

surprising, McLean et al. [28] found that peak internal knee adduction moment during a sidecut 
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was dependent on the initial contact knee abduction angle. A greater knee abduction angle at 

initial contact increases the abduction alignment at the knee. This abduction alignment will then 

increase the internal knee adduction moment and loading at the knee throughout the entire 

weight bearing portion of the movement. It is obvious that reducing the initial knee abduction 

angle in the frontal plane will reduce this vicious cycle of ACL loading.  

In the transverse plane, when the foot is firmly planted on a playing field and the body is 

cutting to a new direction, the knee twists during the sidecut towards the new direction. This 

twisting is what can cause the ACL to tear from the femur rotating about the tibia, due to the foot 

being fixed to the playing surface. Senter and Hame [3] reported that tibial torsion is the basic 

mechanism of noncontact ACL injury. Therefore, transverse plane tibial torque has become a 

greater focus of research in identifying the mechanisms, and reducing the rate, of noncontact 

ACL injuries in athletes. Cross and colleagues [25] also pointed out that the internal tibial 

rotation phase during the sidecut is the key in reducing injuries, and that if the ability to control 

internal tibial rotation is lost, the ACL will be placed under maximum tension and susceptible to 

rupturing. Finding a way to reduce tibial rotation and knee abduction through technique 

modifications will more than likely reduce how much strain is placed on the ACL and reduce the 

number of injuries [15].  

While it is obvious that the knee is the joint where ACL injuries occur, it has become 

more common to examine the proximal hip joint and its influences on ACL strain. At initial 

contact of the cutting maneuver, there is a relatively low hip flexion angle, increased hip 

abduction or adduction, and increased hip internal rotation [15, 16, 19, 20, 26, 28]. When this 

small hip flexion angle is paired with a small knee flexion angle, the “passive joint restraints”, or 
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the ligaments of the knee, have a much greater load placed on them in order to stabilize and 

counteract these abnormal knee motions [16].  

Like the knee, changes in the sagittal plane, even at the hip, do not effect ACL injury risk 

as much as changes in the frontal and transverse planes. Havens and Sigward [19] reported that 

frontal and transverse plane hip biomechanics increased the risk of ACL injury because of the 

increased redirection angle. The internal rotation angle of the hip and greater hip adduction or 

abduction at initial contact are related to the internal knee adduction moment during a sidecut 

[16, 44]. Havens and Sigward [26] found that an initial contact hip internal rotation angle 

explained 25% of the variance in peak internal knee adduction moment. In their systematic 

review of 25 female lower extremity kinematics studies, Fox and colleagues [16] found that in 

most studies, hip adduction greater than 5 could be considered an abnormal hip position. In the 

same study, Fox et al. [16] also found peak hip internal rotation angles ranging from -2.53 to 

24.81. These “undesirable hip” positions “may result in relative knee positioning that leads to 

injury” [20].  

This knee positioning, especially in the frontal and transverse planes, can become 

detrimental to the ACL by increasing the internal knee adduction moments experienced at the 

knee. Numerous studies have found that internal knee adduction moments during a sidecut are 

more sensitive to hip internal rotation, and that hip internal rotation is a significant predictor of 

peak internal knee adduction moments [23, 26, 28]. More specifically, Havens and Sigward [26] 

found that, at initial contact of a 90 cut, the smaller the internal rotation angle at the hip, the 

larger the peak internal knee adduction moment. This finding was in contrast to another study 

that found that increasing the angle of hip internal rotation caused an increase in the peak internal 

knee adduction position [16]. Most studies examine cut angles no greater than 60, so it is 
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possible that the relationship between hip internal rotation and abduction knee loading is 

dependent on the angle of the cut [26]. Performing a 90 cut also requires a greater redirection 

angle, which creates the possibility of putting the hip in an abnormal and unfavorable position by 

increasing the amount of rotation. This increased transverse movement at the hip may also 

increase ACL injury risk by compromising the surrounding musculature’s ability to efficiently 

support the increased knee abduction loads [19, 28]. Either way, it appears that any lack of 

control or abnormal alignment at the hip has the potential to increase the internal knee adduction 

moment [44].  

It is important to identify the biomechanical risk factors associated with noncontact ACL 

injuries, but it is also important to link the entire body’s posture to knee loading during a sidecut. 

This link can be used to modify sidecut techniques and potentially reduce ACL injuries. One way 

to modify the posture of the entire body is by modifying where the initial foot contact is located. 

Dempsey and colleagues [15] analyzed videos of ACL injuries and found that athletes that 

suffered a noncontact ACL injury during a sidecut all displayed similar body postures. This body 

posture specifically showed that the foot was located further away from the midline of the body. 

They modified the sidecut technique by bringing the plant foot closer to midline of the body with 

a more upright torso and found that the peak internal knee adduction moment during the weight 

acceptance phase was reduced by 36%.  

Kristianslund et al. [23] examined the same technique factors of a sidecut and included 

the width of the cut. They found that this factor, along with the initial knee abduction angle, 

produced the greatest effect on the peak internal knee adduction moment during the contact 

phase by increasing the moment arm. They also examined the influence of force production on 

peak internal knee adduction moment, assuming that an increased force production would result 
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in a higher peak internal knee adduction moment. However, they found a greater relationship 

between internal knee adduction moment and alignment than force magnitude, indicating that 

changing the alignment of the lower extremity, regardless of the force being produced, has the 

potential to reduce this internal knee adduction moment. The angles at which these modifications 

were implemented were smaller (45 and 30, respectively), but it can be assumed that with any 

cut angle, bringing the foot closer to the midline of the body can potentially reduce this moment 

arm. 

NEUROMUSCULAR FACTORS ASSOCIATED WITH ACL INJURY 

Electromyography (EMG) records the electrical activity of muscles and provides a way to 

quantify the magnitude of muscle activation. It has become the common way in examining the 

activation patterns of muscle groups and individual muscles during different types of movement. 

Neuromuscular control of muscles around the knee, including both pre-activation and reactive 

muscular control, is vital for joint stability and indicates just how stiff the joint is during athletic 

tasks that can potentially lead to an ACL injury. It is believed that there is a high probability of 

ACL injuries occurring within the first 40-100 milliseconds after initial contact through video 

analysis [21-23]. 

Specifically, the co-activation of the knee extensors, the quadriceps, and the knee flexors, 

the hamstrings, are responsible for maintaining knee stability, and limiting tibial translation [24]. 

These two muscle groups can influence the ability to stabilize the knee in the frontal and 

transverse planes [30]. Besier and colleagues [30] reported two generalized neural strategies for 

how the body adjusts to counter any load that is applied to the knee during a sidecut. The first 

strategy, known as “selected activation”, involves increasing the activation of particular muscles 

in order to counter external loads placed on the joint. The second strategy, generalized co-
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contraction, occurs when the quadriceps and hamstrings co-activate without any specific 

muscles. Both strategies work to stabilize the knee during frontal and transverse planar 

movements, but higher muscle activation patterns or lack of active neuromuscular control can 

potentially increase the risk of rupturing the ACL [33, 43]. 

An ACL injury can occur when the muscular force produced to counteract the tibia 

rotating is overcome, usually from high knee extension force production and low knee flexor 

force production. During a sidecut, there is high quadriceps muscle activation just before foot 

strike that frequently exceeds maximum isometric contraction [24]. When the quadriceps are 

contracted near full knee extension, the ACL becomes strained from the tibia being pulled 

anteriorly by the quadriceps muscles [2, 24]. Malinzak et al. [32] and Renström et al. [31] both 

found that ACL strain increases with higher quadriceps activation and knee flexion between 0-

45. This high activation results in reduced knee flexion and an increased patella-tendon-shift 

angle, which draws the tibia forward in relation to the femur. In examining the sidecut, Colby et 

al. [24] found knee flexion angles at foot strike to be 22, which is in the range linked with 

greatest ACL strain, because of the increased quadriceps activation. During the deceleration of 

the sidecut, the knee flexes at a high speed while the quadriceps are also lengthening at high 

speeds. This combination of decreased knee flexion and muscle activation will most likely 

produce large knee forces which place it in a vulnerable position [24]. While a large load is 

placed on the ACL due to quadriceps activation near full extension, McLean et al. [8] explained 

why musculature forces in the sagittal plane alone cannot injure the ACL. With the knee in this 

position, the muscle fibers of the quadriceps are shortened in a way that significantly reduces 

their maximum force production, so the shear loads produced are unable to rupture the ligament.  
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The hamstring muscles are also important in stabilizing the knee. They act as an 

antagonist to the quadriceps and reduce ACL strain by resisting mediolateral and anterior tibial 

translation forces, but their function is dependent on knee flexion angle [2, 3, 24]. ACL strain is 

significantly reduced when the hamstrings and quadriceps are simultaneously activation with the 

knee flexed 30-90o. Unfortunately, the same study found that from 0-30 of knee flexion, 

simultaneous activation of the hamstrings and quadriceps did not significantly reduce the strain 

on the ACL [31]. There is normally submaximal hamstring muscle activation at and after foot 

strike. This submaximal activation indicates decreased hamstring force production, which has 

been implicated as a potential mechanism for increased ACL injury risk. Submaximal hamstring 

activation, paired with increased quadriceps force production, can result in a significant tibial 

anterior draw, straining the ACL [24]. Weinhandl et al. [33] confirmed that ACL loading 

increased when there was decreased hamstring strength because of the reduced posteriorly 

directed shear force, indicating that greater strength and a greater force produced by the 

hamstrings can decrease anterior tibial draw by increasing knee flexion. In fact, Senter and Hame 

[3] found that knee flexion angles between 15 and 60 decreased ACL force due to the co-

contraction from the hamstrings. Zebis et al. [45] also found that with neuromuscular training, 

hamstring activation increased while quadriceps activation remained the same, thus potentially 

reducing the load placed on the ACL and decreasing injury risk.  

Because of the function of both the quadriceps and hamstrings and how they affect 

loading on the ACL, examining co-activation patterns of the quadriceps and hamstrings has 

become the common way in identifying muscular imbalances. The co-activation between these 

two muscle groups creates muscular “active stability” for the knee by acting as “active restraints” 

and providing muscular protection [41]. There is typically a 2:1 ratio of quadriceps strength to 
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hamstring strength (Q:H) in the general population. This ratio has been suggested to reveal the 

muscular stability around the knee and indicate whether or not there is an increased risk of 

injury, especially during dynamic movements [46]. This 2:1 Q:H ratio indicates a larger force 

exerted by the quadriceps compared to the hamstrings. This increased force produced from the 

quadriceps increases the ACL loading and risks ACL injury, but if the co-activation levels from 

the hamstrings are scaled enough to resist this anterior pull, the load is not too great on the ACL. 

However, if there is an even greater ratio between quadriceps and hamstrings activation levels, 

the anterior shear load will dramatically increase on the ACL. An imbalance between the 

quadriceps and hamstrings co-activation can result in “passive stability”, where reliance is placed 

on the ligament and not the muscles [41]. To reduce the load on the ligament, hamstring 

activation levels must be enough to counteract the quadriceps activation levels. Identifying 

activation and strength imbalances between the two muscle groups may be critical in protecting 

the ACL from excessive loads.  

Movements that involve a rapid deceleration and cutting increase the risk of rupturing the 

ACL. Examining both the biomechanical and neuromuscular factors associated with noncontact 

injuries are important in creating a way to possibly reduce this type of injury. The sagittal plane 

alone cannot produce enough force to rupture the ACL, but smaller knee flexion angles 

contribute to increasing the load on the ligament. A more extended knee also increases the tibial 

anterior draw, placing even more strain on the ACL. Movements in the frontal and transverse 

planes are more likely to contribute to noncontact ACL injuries. In any movement where the 

knee medially collapses, thus creating a large internal knee adduction moment, and internal 

rotation control is lost, a large strain is placed on the ligament. Abnormalities at the hip also 

influence ACL strain. More specifically, hip internal rotation is a significant predictor of knee 
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abduction. Initial contact body position can also affect how much strain is placed on the 

ligament. The closer the foot is to the midline of the body decreases the strain on the ACL, which 

in turn reduces the stress in the ACL, thus reducing the risk of a noncontact injury. 

Neuromuscular control also contributes to noncontact ACL injuries. A higher quadriceps force 

magnitude pulls the tibia forward and creates an increased anterior shear force. This can be 

counteracted by the hamstrings if their contractions are sufficient enough to counteract the large 

quadriceps force, creating a posterior shear force. However, decreased hamstring strength 

typically indicates that the anterior shear force will not be counteracted. Understanding these 

biomechanical and neuromuscular factors associated with noncontact ACL injuries create the 

possibility of reducing these types of injuries.  

GENDER DIFFERENCES IN ACL INJURY 

Injury rates have shown that females are 2-8 times more likely to sustain a noncontact 

ACL injury compared to males [47-50]. Gray et al. [47] was among the first to report gender 

differences in basketball players who suffered ACL injuries. It has been found that regardless of 

the sport, female noncontact ACL injury rates are significantly higher than male noncontact ACL 

injury rates [50]. The question that has become the basis of several studies is are there any lower 

extremity differences between males and females during athletic tasks that lead to this gender 

difference in injury rate? Ireland [51] explained that noncontact ACL injuries are multifactorial, 

and these factors can be categorized as intrinsic, extrinsic, or a combination of the two. She 

describes intrinsic factors as those that cannot be changed due to an individual’s anatomy and 

physiology. These factors include alignment, hyperextension, physiologic rotatory laxity, ACL 

size, femoral notch size and shape, hormonal influences, and inherited skills. Extrinsic factors 

are those that can be changed and are controlled by the individual. These include the 



www.manaraa.com

 

25 

 

 
strengthening of muscle groups, conditioning, shoes, and motivation. And finally, combined 

factors can potentially be changed and include proprioception, neuromuscular, order of firing, 

and acquired skills. There has been increased interest in studies that focus on the biomechanical 

and neuromuscular control factors that differ between males and females because they are the 

most likely to contribute to the increased injury rate in females and have the potential to be 

changed and corrected. 

BIOMECHANICAL GENDER DIFFERENCES 

The first factor that differs between genders is lower extremity biomechanics. The 

position that females tend to adopt is landing in a more upright position with decreased knee and 

hip flexion. This decreased sagittal plane movement is not able to protect the ACL and leads to 

an increased anterior shear force on the ligament. Malinzak et al. [32] found lower knee flexion 

angles in females, with an 8 difference between males and females that remained consistent 

during the entire sidecut. Wallace et al. [27] also found females to have greater extension angles 

compared to males (10.14 vs. 17.43). Ireland [51] reported similar findings, with females 

showing knee flexion values of 24.6 compared to 29.8 in males. Interestingly, Wallace et al. 

[27] found that females reached their maximum knee flexion angles the same time as males, even 

though they exhibited greater knee extension angles. This makes it probable that females have an 

increased knee flexion velocity, which can possibly decrease the amount of control females have 

in the sagittal plane.  

While McLean et al. [8] found sagittal plane movements do not solely place the ACL at 

an increased risk of injury, pairing sagittal plane differences with frontal plane gender 

differences may help explain the increased rate of injury in females. At the time of injury during 

a sidecut, females have smaller knee flexion angles paired with a more medially collapsed knee 
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compared to their male counterparts [27, 32, 35]. Ireland [51] reported knee abduction angles at 

11.1 in females, but only miniscule 1.9 angles in males. Sigward and Powers [35] found no 

significant kinematic differences between males and females, but they were the first to find 

females who experienced greater frontal plane knee moments compared to males in the early part 

of the sidecut. Eighty percent of their female subjects experienced a greater medially collapse of 

the knee, resulting in internal knee adduction moments up to two times greater compared to only 

40% of males who demonstrated internal knee adduction moment [35]. This medial knee 

collapse also occurs faster in females than males, giving the body less time to adjust if it is in an 

undesirable position [37]. While studying the kinematics and kinetics of baseball and softball 

players, Wallace et al. [27] examined females displaying rotations in the transverse plane that 

places them at a greater risk for an ACL injury. This transverse plane rotation, paired with the 

greater extension moments found in females, reverts back to the loading characteristics that 

Markolf et al. [1] described to have the most potential for tearing the ACL.  

Bencke and colleagues [44] observed in female handball players that peak internal knee 

adduction moments and external knee rotation coincided with peak internal hip external rotation 

moments and hip abduction moments, showing that the connection between knee and hip 

alignments to be of even greater importance in females. Females also have increased internal hip 

rotation compared to men, which has been shown to be a predictor of ACL injury [37]. Pollard et 

al. [52] found that female athletes exhibited all of the biomechanical risk factors at the hip that 

are associated with ACL injuries. Females had significantly greater hip internal rotation (7.7 vs. 

-1.0), decreased hip flexion (49.3 vs. 54.0), greater internal hip adductor moments (-1.69 

Nm/kg vs. -0.87 Nm/kg), and decreased internal hip extensor moments (5.36 Nm/kg vs. 6.67 

Nm/kg). These results indicate that females rely on the frontal and transverse planes more 
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heavily than their male counterparts. The increased internal rotation during dynamic activities 

can also potentially alter the lower extremity alignment, increasing ACL injury risk. The 

decreased extensor moments and decreased hip flexion angles in females indicate that the male 

subjects were better able to engage their hip extensors and control their movements in the sagittal 

plane during deceleration. It is clear that the motions in the frontal and transverse planes pose a 

much greater risk for females than males in the possibility of injuring the ACL. 

NEUROMUSCULAR GENDER DIFFERENCES 

The second factor where gender differences are present is lower extremity muscle 

activation patterns. Abnormal neuromuscular control in females, especially during dynamic 

athletic movements, is viewed as one of the most critical factors that can contribute to the 

increased injury rate in females [28, 51]. Luckily, this abnormal neuromuscular control is 

considered a combined factor, with both intrinsic and extrinsic components, meaning that it has 

the potential to change and improve [51]. These factors can be changed by improving the order 

of neuromuscular activation patterns so the body becomes more efficient at performing 

dynamic movements.  

Muscle activation differences between genders are also present in the sagittal plane when 

examining the quadriceps and hamstrings activation levels. Females, due to the smaller flexor 

moments and the increased extensor moments of the knee, display increased quadriceps activity 

(191% MVIC) compared to men (151% MVIC) during the first 20% of the foot contact phase 

[35]. Malinzak et al. [32] also found similar results, with the normalized quadriceps activation in 

females being consistently above their male counterparts, with differences between 17% and 

40%. This increased activation, specifically in the vastus lateralis (40% more in females than 

males during the loading phase), suggests that females exhibit a greater reliance on quadriceps 
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muscle activation to stabilize the knee and protect it from anterolateral subluxations [17, 20, 27, 

32, 37]. As stated previously, this increased quadriceps activation unfortunately draws the tibia 

anteriorly, in relation to the femur, severely stressing the ACL when there is low knee flexion 

angles [24].  

Unfortunately, while females have a greater magnitude of activation and strength in the 

quadriceps, they have a decreased magnitude of hamstring activation and strength during a 

sidecut [32, 37]. Weinhandl et al. [33] demonstrated that reduced hamstring strength in females 

increased the peak load placed on the ACL by 36%. They found a 44% increased load on the 

ACL in the sagittal plane, due to the anterior shear force of the tibiofemoral contact and posterior 

shear force of the hamstrings, and a 24% increase in the frontal plane ACL loading. Malinzak et 

al. [32] found that male hamstring activation levels were greater than 20% compared to their 

female counterparts. Interestingly, studies have found that hamstring activation levels were 

similar between males and females, yet females recruited more quadriceps and were unable to 

properly scale their hamstring activation to the same levels of the quadriceps [17]. Thus reduced 

hamstring strength in females creates an inability to scale hamstring force production levels to 

similar levels achieved by the quadriceps, which causes an imbalance between the two muscle 

groups [17]. This imbalance between the two muscle groups creates excessive anterior shear 

force and minimal posterior shear force, which significantly increases the risk of an ACL injury.  

Gender differences are present in the quadriceps-hamstring ratio during the loading phase 

of the sidecut, which reveals how females are more quadriceps dominate than males. Having this 

quadriceps-dominate characteristic can reduce knee stability and stiffness. Ireland [51] reported 

stiffness values of males up to 473%, while females only had stiffness values up to 217%. The 

female’s body weight will not be able to be properly supported due to this laxity in the knee. 
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Hanson et al. [17] found a greater quadriceps-to-hamstrings ratio in female soccer players (1.26) 

compared to males (0.88), demonstrating that the female participants used more of their 

quadriceps than hamstrings during a sidecut. It is interesting to note that Sigward and Powers 

[35] found no differences in gender hamstring activation. So while there may be minimal 

differences in hamstring activation levels between genders, the increased quadriceps activation 

levels in females creates an excessive anterior shear force that cannot be counteracted by the 

hamstring, leaving the ACL in a more vulnerable position to injury [32]. This shows that the 

quadriceps activation level is the primary factor in causing such larger ratio differences between 

males and females. Either way, it is clear that an imbalance between hamstring and quadriceps 

strength in females increases the strain of the ACL.  

Examining the pre-activation levels of the quadriceps and hamstrings and the gender 

differences of these levels has also become an interest in several studies. Examining these levels 

indicate how much force can potentially be generated during dynamic tasks. The proper amount 

of force to absorb the impact needs to be generated before the task is performed to prepare the 

body. Hanson et al. [17] found a higher pre-activation level, 31% more than males, of the vastus 

lateralis, indicating that this pre-activation is preparing the muscle for movement. It is scaled 

greater in females than males because females rely more heavily on the vastus lateralis during a 

sidecut. Bencke and Zebis [34] found significantly lower hamstring pre-activation in females 

compared to males, in both the semitendinosus (33 ± 12% vs. 46 ± 14%) and biceps femoris (30 

± 10% vs. 52 ± 22%). This lower pre-activation in females during initial contact indicates that 

less force will be produced by the hamstrings to pull the tibia posteriorly, and this decreased 

force means that the hamstrings will not be able to protect the ACL sufficiently. In the same 

study, the hamstring-to-quadriceps pre-activity ratio was also significantly lower in females than 
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males during a sidecut (0.52 ± 0.13 vs. 0.91 ± 0.42), again indicating a greater imbalance 

between hamstrings and quadriceps in females. Hanson et al. [17] found that females lacked 

hamstring activation in the preparatory phase compared to males, but reported the quadriceps-to-

hamstring ratio instead of hamstring-to-quadriceps ratio. They found that males had a co-

activation ratio of 0.81 ± 0.26, compared to 1.16 ± 0.74 for females, revealing another significant 

pre-activation muscular imbalance in females. This decreased preparatory hamstring activity and 

increased quadriceps activity indicates that the hamstring will not be able to generate enough 

force to pull the tibia posteriorly and protect the ACL from excessive loading. It is possible to 

improve hamstring pre-activity and decrease the risk of ACL injury. With neuromuscular 

training, Zebis et al. [45] saw a significant increasing in semitendinosus activation from 41±12% 

to 52±16%, 50 ms before initial contact. Semitendinosus activation 10 ms after initial contact 

also increased from 29±12% to 39±20%. These findings reveal an important neuromuscular 

adaptation that can potentially reduce the risk of noncontact ACL injury.  

Both biomechanical and neuromuscular gender differences may explain why females are 

at an increased risk of noncontact ACL injuries. Females exhibit smaller knee flexion angles and 

greater knee adduction angles compared to males. These angles create knee moments that place a 

tremendous amount of strain on the ligament. Females also rely more heavily on their quadriceps 

and have decreased hamstring strength, both of which contribute to ACL injury because of the 

excessive anterior shear force that cannot be counteracted by the hamstrings. Females also do not 

pre-activate their hamstrings to the same level as males, indicating that the proper amount of 

force needed to absorb the impact of dynamic tasks cannot be generated. Increasing the knee 

flexion angles, increasing hamstring strength, and improving neuromuscular activation patterns 
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puts the knee, and therefore the ligament, in a more favorable position that can reduce the risk of 

a noncontact injury in females.  

FEMALE SOFTBALL PLAYER ACL INJURY RATE 

In the 2003-2004 academic year, there were a total of 912 NCAA softball varsity teams, 

with 16,079 athletes participating in the sport. By 2014-2015, the total number of teams has 

increased to 1003 with 19,628 participants [10]. While softball has grown in popularity 

throughout the years, it also means that the possible number of injuries sustained by female 

athletes has increased. There are five major body parts that are injured in softball, which include 

the head/neck, upper extremity, trunk/back, lower extremity, and other/system. While the upper 

extremity had a substantial percentage of injuries in games (33.1%) and practices (33.0%), the 

lower extremity sustains the greatest percentage of injuries in both games and practices (43.3% 

& 40.8%, respectively) [12]. An epidemiology study conducted by Hootman and colleagues [11], 

reviewed 15 different sport injury reports and found that in both games (53.8%) and practices 

(53.7%), the lower extremity had the highest injury rate. It is interesting to note that the gender 

differences seen in ACL injury rates are also present between softball and baseball, with softball 

players experiencing higher injury rates than baseball players [11, 36]. 

Marshall et al. [12] found a disturbing 78.2 % of all game day softball injuries (n = 2537 

total injuries) were caused by noncontact means, such as running bases. It was also found that 

8.7% of all game day injuries resulted in internal derangement of the knee, for a total of 221 knee 

injuries. Notably, this internal derangement of the knee resulted in the greatest amount of activity 

time loss. Thirty-one percent of the 221 injuries were classified as ACL injuries, equating to 69 

total ACL injuries in this data set. The base runner was reported to be at the highest risk of 

injury, with 28.8% of athletes (n = 731) being in that position at the time of injury. Also, 187 
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game injuries were sustained while rounding the base. While interpreting these injury rates, it 

should be understood that not every college that participates in Division I softball report injury 

rates to the NCAA Injury Surveillance System, and only 11.8% of schools sponsoring Division I 

softball participated in the data collection [12]. More accurate injury rates would be available if 

more schools reported their injuries.  

Hootman et al. [11] also reported injury rates in different sports and found that 129 ACL 

injuries occurred in softball over a 15-year period, equal to 2.4% of all softball injuries. While 

this is a small percentage, they noted that 88% (n = 113.52) of these ACL injuries resulted in 10 

or more days of time loss [12]. This amount of time removed from practice and game play can 

result in an increase amount of rehabilitation time to get back to pre-injury activity and skill 

level. It is interesting to point out that the gender discrepancy in noncontact ACL injuries is also 

present between softball and baseball players, with softball players sustaining a higher rate of 

noncontact ACL injuries compared to baseball players [11, 36]. In fact, a study analyzing sex 

differences in ACL injuries in collegiate sports found the highest ACL injury rate ratio to exist 

between softball and baseball (IRR = 6.61), indicating softball players were over six times more 

likely to sustain a noncontact ACL injury [36]. While the number of ACL injuries is lower in 

softball compared to other sports, such as football, basketball, and soccer, ACL injuries are still a 

major injury sustained by these athletes. Analyzing what is occurring at the knee while a player 

is rounding the base is therefore important to understand why this time of play results in a larger 

number of ACL ruptures.  

SUMMARY 

Noncontact ACL injuries are one of the most detrimental injuries an athlete can sustain. 

Most require reconstructive surgery and a prolonged rehabilitation period before athletes can 
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return to their sport. And even then, there is a chance that the athlete may never reach their pre-

injury activity and skill level. Those who suffer an ACL injury also have an increased risk of 

developing knee osteoarthritis later in life [9, 15]. Understanding the anatomy of the ACL, what 

occurs to the ligament when a load is placed on it, and the different factors associated with ACL 

injuries are important in developing intervention programs to reduce the number of ACL 

ruptures athletes sustain. The increased rate of ACL injuries in females compared to males is also 

concerning, and identifying the underlining cause of this increased rate is vital in possibly 

reducing or eliminating this difference. Just like any other sport, female softball players are at 

risk of suffering an ACL injury, especially during base running. Understanding what is occurring 

at the knee while a player is coming in contact with the base is important to potentially reduce 

the number of ACL injuries in softball. 
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CHAPTER 3: 

METHODS 

The purpose of this study was to examine how introducing a raised surface effects lower 

extremity kinematics, kinetics, and muscle activation patterns of recreationally active female 

softball players performing a 90 sidecut. This chapter described the methods used to conduct 

the study. 

PARTICIPANTS 

Participants were recruited via fliers, word of mouth, and emails. If participants were 

recruited via word of mouth, an email, with the study flier attached, was sent to the individual to 

ensure that they were still interested and qualified for the study.  

Ten recreationally active females (age: 21.5±1.96 yrs, height: 1.7±0.04 m, mass: 

66.99±10.87 kg) participated in this study. G*Power 3.1.9.2 [53] was used to estimate the sample 

size. Mean peak internal knee adduction moments and their associated standard deviations from 

four previous studies were used to calculate effect size [26, 28, 35, 54]. Participants had a 

minimum of two years of high school softball experience to ensure they were familiar with 

proper base rounding technique. Recreationally active was defined as being physically active at 

least 3 days per week for a minimum of 30 minutes each session. One of these sessions had to 

include dynamic movements, such as running and cutting. Participants were excluded if they 

ever had a lower extremity injury that required surgery (e.g., ligament rupture, meniscus repair, 

bone fracture), had ever suffered an ACL injury, or had suffered a lower extremity injury in the 

past six months. Participants were also excluded if they were experiencing any lower extremity 

pain the day of data collection. Participants provided written consent before data collection 

commenced, which was approved by the University Institutional Review Board prior to testing. 
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Participants filled out the Lower Extremity Functional Scale (LEFS) to determine if they had any 

difficulties performing different daily activities [55]. The minimal detectable change and 

minimal clinically important difference of LEFS was 9, which suggests that a change of greater 

than 9 scale points on the LEFS is a true change in lower extremity function [55]. Thus, any 

participant who scored lower than a 71 out of 80 on the LEFS was excluded from the study. 

During this time, the participant’s demographic information (age, height, years’ experience) was 

recorded. Weight was collected from the static trial.  

All participants wore a pair of Spandex shorts, a generic short-sleeved t-shirt, and a pair 

of standard lab running shoes (Noveto, Adidas, USA). Tight Spandex shorts were to ensure there 

was minimal movement of the marker set, and standard lab shoes were to decrease any 

variability and to ensure that any differences observed were not due to shoe type. 

INSTRUMENTATION 

EQUIPMENT SETUP 

A twelve-camera infrared motion capture system (200 Hz, Vicon Motion Analysis, Inc., 

Centennial, CO, USA) was used to collect marker coordinate data. Cameras were calibrated prior 

to data collection. Each camera collected a minimum of 6000 wand counts to ensure each marker 

was captured during the dynamic movement used for the study. The capture volume included the 

area involved in the sidecut (i.e. the immediate area surrounding the base, including the entrance 

and exit lanes). A 60x60 cm AMTI force platform (2000 Hz, BP600600, Advanced Mechanical 

Technology, Inc., Watertown, MA, USA) was used to measure ground reaction forces. Before 

data collection began, the force platform was checked to ensure there was no excess noise that 

would interfere with collection. Each force platform was zeroed prior to data collection and 

throughout the data collection to remove any residual noise.  
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ELECTROMYOGRAPHY 

Wireless EMG sensors were placed on predetermined muscles of the right lower 

extremity. The TrignoTM Wireless EMG system and sensors (2000 Hz, Delsys, Inc., Natick, MA, 

USA) were used due to the high-speed, dynamic movement performed. Four sensors were used 

during data collection. Each sensor was placed 1 centimeter apart on the muscle belly of the 

vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and medial hamstrings (MH), 

specifically the semitendinosus, following the muscle fiber direction. These muscles were chosen 

to represent the knee extensors and flexors. The exact locations of the sensors were identified 

according to the guidelines provided by Rainoldi et al. [56]. The site for the BF was located 

approximately 35% along the reference line starting from the ischial tuberosity to the lateral side 

of the popliteus cavity. MH was located approximately 36% along the reference line from the 

ischial tuberosity to the medial side of the popliteus cavity. VL was located approximately 94 

mm along the reference line from the superior lateral side of the patella to the anterior superior 

iliac spine. The site for VM was located approximately 52 mm from the superior medial side of 

the patella along the reference line medially oriented at an angle of 50 with respect to the 

anterior superior iliac spine. Muscle activation data was collected simultaneously with marker 

coordinate and ground reaction force data, using the Nexus 2.5 (Vicon Motion Analysis, Inc., 

Centennial, CO, USA). The Trigno™ Control Utility program was used to guarantee the sensors 

were properly functioning throughout the data collection.  

PARTICIPANT SETUP 

Each participant came to the lab for one session to complete testing. Participants 

completed a five-minute warm-up jog, at a self-selected pace, on a treadmill located in the lab. 

They stretched the muscles of the lower extremities to their satisfaction. Maximum voluntary 
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isometric contraction (MVIC) testing was completed after EMG sensors were placed to allow 

comparison of the EMG activation levels between participants and muscles. EMG levels were 

also normalized to the MVIC readings obtained. An isokinetic dynamometer (Biodex Medical 

Systems, Inc., Shirley, New York, USA) was used to collect MVIC readings. Both quadriceps 

and hamstrings MVIC readings were collected with the right knee flexed at a 45 [17]. The 

participant performed maximum effort isometric contractions against the fixed lever arm, 

performing extension for the quadriceps and flexion for the hamstrings. Warm-up trials were 

performed to familiarize participants with the testing protocol. Once the participant was 

comfortable with the MVIC protocol, three MVIC trials were collected for each muscle group. 

There was a three-second countdown, followed by five seconds of maximal effort. During the 

three-second countdown, each second was associated with an increase in effort (i.e. second three 

relaxed, second two at 50% of maximal effort, second one at 75% of maximal effort) until 

maximal contraction was achieved. The middle three seconds from the five-second maximal 

effort trials were used to assure a steady-state activity level for each muscle [57]. From the three 

trials, the maximum MVIC value was used to normalize the EMG data collected during 

movement trials. Therefore, a percentage of the MVIC was used to interpret the EMG results.  

To define segment coordinate systems, anatomical reflective markers were placed on the 

right leg of the participant. The pelvis was defined with anatomical markers at the left and right 

iliac crests, as well as the left and right greater trochanters. Anatomical markers were also placed 

at the medial and lateral femoral epicondyles, medial and lateral malleoli, and first and fifth 

metatarsal heads to define the femur, shank and foot, respectively. Tracking markers were placed 

on the right leg of the participant to track the participant’s movement. Three semi-rigid 

thermoplastic shells, each having four reflective markers, were placed on Velcro-sensitive 
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neoprene wraps on the pelvis, thigh, and shank. One semi-rigid thermoplastic shell with four 

reflective markers was also secured to the lateral heel of the shoe.  

One static trial was collected, which consisted of the participant standing still, with their 

arms crossed over their chest. Once the static trial was collected, the anatomical markers were 

removed, leaving only the tracking marker used for data collection. A dynamic range of motion 

(ROM) movement trial was then collected. During the dynamic ROM trial, the participant first 

extended their entire leg, from the hip, strait forwards and bring it back a standing position. This 

was followed by the leg being extended out to a forward 45 angle, out laterally from the body, 

out to a backwards 45 angle, and extended straight backwards. Then, the participant bent their 

right knee at a 90 angle and extended the leg forwards and back to the 90 angle three times. 

With the knee still bent at 90, the participant plantar flexed and dorsiflexed the right foot three 

times each. Once the dynamic ROM trial was collected, data collection began.  

TESTING PROTOCOL 

The sidecut task simulated rounding first base, off the participant’s right foot to the 

opposite side. They stayed within an angle of 60 to 90 relative to the original line of 

progression. The range of entrance angles was measured and marked off using a goniometer in 

relation to where the base was placed on the force platform. Entrance and exit lanes were taped 

on the ground to create a running lane for the participants and to assure that they stayed within 

the preferred angle. The running lane lead directly to the base. Two meters before the base, the 

participant began simulating “rounding the base” in order to achieve the proper angle of the cut 

and maintain the required speed. The exit lane followed the normal running path that would lead 

to second base in a game-like situation. Participants had to maintain their speed for two steps 

after leaving the base or plate before they began to slow down. Two base conditions were used 
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for the study (Figure 1). The first condition (WB) required participants to perform the sidecut on 

a base (Schutt Sports Jack Corbet MLB Hollywood Baseball Base, Schutt Sports, Litchfield, IL) 

placed in the center of the force platform. The second condition (NB) required participants to 

perform the sidecut on just the force platform. During the NB condition, there was an outline of 

the base taped on the force platform so the participants replicated the same cut pattern as when 

the base was present. Participants aimed for the bottom left corner (“inside corner”) for the WB 

condition, and the bottom left corner of the base outline for the NB condition. During each trial, 

foot placement was closely monitored to accurately replicate how the sidecut is performed in a 

game (Figure 2a). If foot placement was improper (Figures 2b-d), the trial was redone. The 

testing procedures were the same for both conditions. Base conditions were counterbalanced 

between all participants.  

Participants were instructed of sidecut task and were allowed to practice as many times as 

necessary until they were comfortable with the route. Participants started 7 meters away from the 

force platform so there was ample room to reach the required speed. Two pairs of timing gates 

(63501 IR, Lafayette Instrument Inc., IN, USA) were used to maintain the entrance and exit 

speeds of each trial. The timing gaits were placed 1 m apart from each other and were at, or close 

to, shoulder height. Participants were required to maintain an entrance speed of 4.0 m/s ± 0.25 

m/s and an exit speed of 3.75 m/s ± 0.25 m/s. The first pair of timing gates were placed 2 meters 

before the participant began to deviate from their forward linear motion. Participants ran towards 

the force platform, began “rounding the base” two meters prior to contacting the force platform, 

performed the sidecut within the predetermined angle range, and continued running for 7 m. 

Each participant was required to maintain their speed for two steps after contacting the base. Five 

successful trials were collected for each condition. A successful trial consisted of the participant 
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staying within the running lane, maintaining the required entrance speed of 4.0 m/s ± 0.25 m/s, 

correctly contacting the inside corner of the base, staying within the exit lane, and maintaining 

the required exit speed of 3.75 m/s ± 0.25 m/s.  

DATA PROCESSING AND ANALYSIS 

Visual3D software suite (v5, C-Motion, Inc., Rockville, MD) was used to compute 

kinematic and kinetic data of the right lower extremity. Because non-contact ACL injuries 

normally occur shortly after initial contact, only the first 100 ms after initial contact (post-

contact) was analyzed [23]. There have also been some indications that pre-activation levels may 

contribute to ACL loading levels [17, 34]. Therefore, 50 ms prior to initial contact (pre-contact) 

were also analyzed. Raw marker coordinate and GRF data from each trial were low-pass filtered 

using a fourth-order, zero lag Butterworth filter with a cutoff frequency of 20 Hz [23]. A four-

segment (pelvis, right thigh, right shank, and right foot) skeletal kinematic model was created 

using the standing calibration trial. Three-dimensional ankle, knee, and hip angles were 

calculated using a joint coordinate system approach [58]. Hip joint centers were located 

according to Bennett et al. [59]. The knee joint center was the midpoint between the epicondyle 

markers [58], and the ankle joint center was the midpoint between the malleoli markers [60]. 

Internally applied, three-dimensional joint kinetics were calculated using a Newton-Euler 

approach [61], and projected to the joint coordinate system [62]. Body segment parameters were 

estimated from Dempster et al. [63]. Global maximum values for each dependent variable, from 

each trial, were extracted from Visual3D. All peak values occurred during the stance phase of the 

sidecut. A vertical ground reaction force threshold of 10 N indicated initial foot contact (IC).  

All EMG data (MVIC trials and motion trials) were pre-amplified and band-pass filtered 

using a fourth-order, zero lag Butterworth filter with a high pass cutoff frequency of 10 Hz and a 
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low pass cutoff frequency of 350 Hz to remove any noise. The signal was then full-wave 

rectified and low pass filtered at 5 Hz [33]. The middle three seconds for each MVIC trial was 

used to assure a steady-state activity level for each muscle [57]. The maximum MVIC value for 

each muscle was identified from the three MVIC trials. EMG data for each muscle from each 

motion trial was then normalized to its respected peak MVIC value. For each trail, the 

medial/lateral co-contraction index of the quadriceps (VM:VL CCI) was then computed as the 

ratio of average VM-to-VL activation from the 50 ms pre-contact to the 100 ms post-contact.  

𝑃𝑟𝑒-𝑉𝑀: 𝑉𝐿 𝐶𝐶𝐼 =  
𝑎𝑣𝑔(𝑉𝑀50𝑚𝑠−𝐻𝑆)

𝑎𝑣𝑔(𝑉𝐿50𝑚𝑠−𝐻𝑆)
    (1) 

𝑃𝑜𝑠𝑡-𝑉𝑀: 𝑉𝐿 𝐶𝐶𝐼 =  
𝑎𝑣𝑔(𝑉𝑀𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)

𝑎𝑣𝑔(𝑉𝐿𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)
   (2) 

Likewise, quadriceps/hamstrings co-contraction index (Q:H CCI) was computed as the 

ratio of average quadriceps-to-hamstrings activation. Due to the possibility of high hamstring 

pre-contact activation, the Q:H CCI was separated into pre-contact Q:H CCI and post-contact 

Q:H CCI. Average quadriceps activation was calculated as the sum of average VM and average 

VL activation. While average hamstrings activation was calculated as the sum of average BF and 

average MH activation.  

𝑄 = (𝑎𝑣𝑔𝑉𝑀 + 𝑎𝑣𝑔𝑉𝐿)     (3) 

𝐻 = (𝑎𝑣𝑔𝐵𝐹 + 𝑎𝑣𝑔𝑀𝐻)     (4) 

𝑃𝑟𝑒-𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑄: 𝐻 𝐶𝐶𝐼 =
(𝑄50𝑚𝑠 𝑝𝑟𝑒−𝐻𝑆)

(𝐻50𝑚𝑠 𝑝𝑟𝑒−𝐻𝑆)
    (5) 

𝑃𝑜𝑠𝑡-𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑄: 𝐻 𝐶𝐶𝐼 =
(𝑄𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)

(𝐻𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)
    (6) 

All CCIs were computed separately for each trial. The average CCI value was then 

computed over the five trials. Q:H CCI values of 1.0 indicated equal average activation levels 

between the quadriceps and hamstrings, and VM:VL CCI values of 1.0 indicated equal activation 
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between the vastus medialis and vastus lateralis. Q:H CCI values greater than 1.0 indicated 

increased quadriceps activation compared to hamstrings activation. Q:H CCI values less than 1.0 

indicated greater hamstrings activation compared to quadriceps activation [17]. VM:VL CCI 

values greater than 1.0 indicated greater vastus medialis activation than vastus lateralis, while 

VM:VL CCI values less than 1.0 indicated greater vastus lateralis activation than vastus medialis 

activation. 

STATISTICAL ANALYSIS 

Due to the small sample size, normal distribution was assumed for all variables. 

Dependent t-tests were conducted for all kinematic and kinetic dependent variables between base 

conditions. An independent t-test was utilized to determine if an order effect was present 

between the two base conditions. Two 2x2 (condition x contact time) repeated measure 

ANOVAs were performed to examine the main effects of condition and contact time for EMG 

data, and to determine if any significant interactions were present between condition and contact 

time. The first ANOVA was performed for the VM:VL CCI, and the second was performed for 

the Q:H CCI. Abnormalities were present in one quadriceps sensor for two participants. 

Therefore, VM:VL CCIs could not be calculated for those two participants. Significance for all 

variables was p < 0.05, with a power of 0.80 [64]. All statistical analyses were performed 

through SPSS (v24.0, SPSS Inc., Chicago, IL, USA). 
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CHAPTER 4: 

EFFECTS OF A RAISED SURFACE ON LOWER EXTREMITY KINEMATICS, 

KINETICS, AND MUSCLE ACTIVATION DURING A SIDECUT IN RECREATIONAL 

FEMALE SOFTBALL PLAYERS 
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ABSTRACT 

Noncontact anterior cruciate ligament (ACL) injury is a common sports-related injury. 

“High-risk” dynamic movements, such as a sidecut, have been associated with increasing the risk 

of noncontact ACL injury. Certain biomechanical abnormalities, specifically at the hip and knee, 

and neuromuscular abnormalities, such as unbalanced quadriceps-to-hamstrings activation ratios 

and certain activation patterns prior to initial contact and after initial contact, have also been 

associated with an increased likelihood of noncontact ACL injuries occurring. Approximately 

78% of all NCAA Division I softball game-day injuries are classified as noncontact injury where 

there is no direct contact to a player. Internal derangement of the knee accounted for 221 game 

day injuries, and 31% of these injuries were noncontact ACL injuries. The base runner was at the 

greatest risk of injury, with 28.8% of athletes base running at the time of injury. Additionally, 

9% of base runners, or 187 athletes, were injured while contacting the base. The purpose of this 

study was to determine the effects of a raised surface on lower extremity kinematics, kinetics, 

and muscle activation patterns during a sidecut, simulating rounding first base. Participants 

completed two base conditions – with a base present (WB) and no base (NB) present with a 

controlled entrance and exit speed. Results indicated the only biomechanical difference between 

base conditions was greater peak knee adduction moments in the NB condition compared to the 

WB condition. These findings suggest that the body may be in a better position when a raised 

surface is present during a sidecut and decrease the risk of noncontact ACL injury. Therefore, 

examining movement patterns at the ankle may provide a better explanation for noncontact ACL 

injuries that occur during this time. Regarding muscle activation, there was significantly greater 

quadriceps activation post-contact compared to pre-contact. Significantly greater quadriceps 

activation creates a large anterior shear force on the ACL, increasing risk of injury. 
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INTRODUCTION 

The anterior cruciate ligament (ACL) is one of the most important knee ligaments, 

preventing excessive anterior tibial translation, as well as frontal and transverse plane tibial 

rotation [1]. Unfortunately, there are approximately 80,000 to 250,000 ACL tears in the United 

States each year [4]. ACL injuries are classified as either a contact injury, occurring when there 

is direct player-to-player contact to the knee, or a noncontact injury, occurring when there is no 

direct contact to the knee. Approximately 70% of ACL injuries are noncontact [7] and occur 

during “high risk” dynamic movements that involve sudden deceleration and changes of 

direction, such as a sidecut [18]. These types of movements have the potential to create abnormal 

loading on the ACL. Simply put, an ACL injury occurs when the applied load exceeds the load 

that the ACL can withstand [40].  

Certain biomechanical risk factors have been identified that are associated with 

noncontact ACL injuries. These include increased anterior tibial draw with a knee close to full 

extension (0 to 45 of knee flexion), and excessive internally applied knee adduction and internal 

rotation moments [1]. Research has also indicated abnormalities at the hip, such as decreased hip 

flexion angles, during a sidecut can increase the risk of ACL injury [52]. It has been suggested 

that this decreased hip flexion is due to the inability to decelerate in the sagittal plane, thus 

resulting in an increased reliance on movements in the frontal and transverse planes [52]. Most 

noncontact ACL injuries occur during a range of the first 40 milliseconds (ms) to 100 ms after 

initial contact, indicating that these biomechanical abnormalities occur during this time range 

[21, 23]. Some research has also found that differences in pre-activation (occurring before initial 

contact) can influence whether or not the proper amount of force needed to stabilize the knee is 

generated [17]. Females, specifically, display lower hamstring pre-activity, indicating a different 
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neuromuscular strategy that can result in a predisposed risk of noncontact ACL injuries 

occurring [34]. 

Injury rates have shown that females are 2-8 times more likely to sustain a noncontact 

ACL injury compared to males [47-50]. Females exhibit decreased hip and knee flexion, which 

can lead to increased anterior shear force on the ACL [32]. Increased knee abduction angles and 

internal knee adduction moments have also been seen in females, which can increase ACL injury 

risk [35, 51, 65]. Females exhibit increased quadriceps activity during sidecutting, suggesting a 

greater reliance on the quadriceps to stabilize the knee [17, 32]. Interestingly, when comparing 

lateral and medial quadriceps activations, females tend to display greater lateral quadriceps 

activation during sidecutting [66]. Increased quadriceps activity draws the tibia anteriorly, 

putting severe stress on the ACL when there is minimal knee flexion [24, 31]. Furthermore, 

disproportional recruitment of the lateral quadriceps influences tibial anterior shear force and 

potentially leads to loss of control in the frontal plane, which in turn can increase ACL injury 

risk [67]. The hamstrings act to pull the tibia posteriorly, which reduces the stress placed on the 

ACL [31]. Unfortunately, females exhibit decreased hamstring activation  during dynamic 

movements, suggesting females may be unable to adequately reduce the stress placed on the 

ACL during cutting movements [32]. If there is an imbalanced ratio between quadriceps 

activation and hamstrings activation, an imbalance of anterior shear force to posterior shear force 

is created, which significantly increases the risk of ACL injury [17].  

Fast-pitch softball has increased with popularity, with 19,628 NCAA Division I female 

athletes participating in the 2014-15 season [10]. Increased popularity in the sport means the 

probability of injury increases. It has been found that 78.2% (n = 2537) of all game day softball 

injuries were caused by noncontact means, such as running bases [12]. Internal derangement of 
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the knee accounted for 221 of all game day injuries, and 31% of these were classified as 

noncontact ACL injuries [12]. The base runner has been found to be at the highest risk of injury, 

with 28.8% of athletes base running at the time of injury, and 9% of injuries, or 187 injuries, 

were sustained while contacting the base [12]. While the number of ACL injuries is smaller 

compared to sports such as football or soccer, the injury still results in the most amount of game-

play time lost [12]. Therefore, analyzing the lower extremity while rounding a base can 

potentially aid in understanding why ACL injuries occur in female softball players.  

To date, no study has analyzed the effects of a raised surface on noncontact ACL injury 

risk factors in softball players. Therefore, the purpose of this study was to determine the effects 

of a raised surface (i.e. base) on the kinematics, kinetics, and muscle activation of the lower 

extremity while performing a sidecut in recreational softball players. Firstly, it was hypothesized 

that including a raised surface would increase known ACL injury risk variables. Secondly, it was 

hypothesized there would be greater vastus lateralis activation compared to vastus medialis 

activation, regardless of base condition. Lastly, it was hypothesized there would be greater 

hamstring activation pre-contact, but greater quadriceps activation post-contact, regardless of 

base condition.  

METHODS 

PARTICIPANTS 

Ten recreationally active females (age: 21.5±2.07 yrs, height: 1.70±0.04 m, mass: 

66.99±11.46 kg) participated in the study (Table 1). Inclusion criteria were between 18 to 25 

years old, a minimum of two years high school softball experience to ensure they were familiar 

with the proper base running technique, and being recreationally active. Recreationally active 

was defined as being physically active at least 3 sessions per week for a minimum of 30 minutes 



www.manaraa.com

 

48 

 

 
each session. One session had to include dynamic movements, such as running and cutting. 

Participants were excluded if they ever had a lower extremity injury that required surgery (e.g., 

ligament rupture, meniscus repair, bone fracture), had ever suffered an ACL injury, or had 

suffered a lower extremity injury in the past six months. Participants were also excluded if they 

were experiencing any lower extremity pain the day of data collection. Participants were also 

excluded if they scored lower than 71 on the Lower Extremity Functional Scale (LEFS). 

An a priori power analysis, using mean peak knee adduction moment results from 

previous research [26, 28, 35, 54], indicated a sample size of 10 were needed for an alpha of 

0.05 and a beta of 0.80. Participants provided written consent before data collection commenced, 

which was approved by the University Institutional Review Board prior to testing. Participants 

filled out the LEFS to determine if they had any difficulties performing different daily tasks [55]. 

The minimal detectable change and minimal clinically important difference are both 9 scale 

points, indicating a true change in lower extremity function.  

EXPERIMENTAL PROCEDURES 

A twelve-camera motion capture system (200 Hz, Vicon Motion Analysis, Inc., 

Centennial, CO, USA) was used to collect three-dimensional (3D) marker coordinate data of the 

right leg. One AMTI force platform (2000 Hz, BP600600, Advanced Mechanical Technology, 

Inc., Watertown, MA, USA) was used to measure ground reaction force (GRF) and identify 

initial contact and toe-off. The TrignoTM Wireless EMG system and four sensors (2000 Hz, 

Delsys, Inc., Natick, MA, USA) were used to measure muscle activation of the right leg during 

data collection. Prior to placement, each participants’ skin was shaved and cleaned with alcohol, 

Sensors were placed on the muscle belly of the vastus medialis (VM), vastus lateralis (VL), 

biceps femoris (BF), and the semitendinosus (MH) with an interelectrode distance of 1 cm. The 
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exact locations were identified according to the guidelines provided by Rainoldi et al. [56]. 

Before data collection commenced, an isokinetic dynamometer (Biodex Medical Systems, Inc., 

Shirley, New York, USA) was used to collect maximum voluntary isometric contraction (MVIC) 

data for both the quadriceps and the hamstrings were collected with the right knee flexed at 45 

[68]. Each MVIC trial began with a three-second ramp-up contraction, where participants began 

increasing the force, until they reached 100% of their maximal effort [69]. Maximal contractions 

were held for five seconds, and three trials were collected for each muscle group.  These MVIC 

values were then used to normalize EMG levels and compare activation levels between 

participants.  

Following MVIC testing, ten anatomical reflective markers were placed unilaterally on 

the 1st and 5th metatarsals, lateral and medial malleoli, and lateral and medial femoral 

epicondyles of the right leg. To define the pelvis, anatomical markers were placed on the left and 

right iliac crests, as well as the left and right greater trochanters. Three semi-rigid thermoplastic 

shells, each with four reflective markers, were placed on the shank, thigh, and pelvis. One semi-

rigid thermoplastic shell with four reflective markers was secured to the lateral heel of the 

participant’s shoe. 

Two test conditions were utilized in the study (Figure 1). The first condition (WB) 

required participants to perform the sidecut on a raised surface (i.e. base, Schutt Sports Jack 

Corbet MLB Hollywood Baseball Base, Schutt Sports, Litchfield, IL, USA) placed in the center 

of the force platform. The second condition (NB) required participants to perform the same 

sidecut pattern, but on a flat surface. An outline of the base was taped on the force platform so 

participants could replicate the same cut pattern. Cutting angles were required to be between 60 

90 from the original direction of motion, with this range marked with tape on the floor. Two 
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pairs of timing gates (63501 IR, Lafayette Instrument Inc., IN, USA), placed 1 m apart at 

shoulder height, were used to maintain an entrance speed of 4.0 m/s ± 0.25 m/s and an exit speed 

of 3.75 m/s ± 0.25 m/s. The first pair of timing gates was placed 2 meters before the participant 

met the force plate, when the participant began deviating from their forward linear motion, and 

the second pair was placed immediately after contact with the force platform. Participants were 

required to maintain their speed for two full strides after completing the sidecut. A trial was 

considered successful if the participant maintained the entrance speed, contacted the “inside 

corner” of the base, or base outline with only the forefoot, and maintained the exit speed after 

completing the movement. Five successful trials were collected for each base condition.  

DATA ANALYSIS 

Reconstructed 3D marker coordinates and force data were used to compute kinematic and 

kinetic data of the right leg (Visual3D, v5, C-Motion, Inc., Rockville, MD, USA). Coordinate 

and GRF data were both filtered using a fourth-order, low-pass Butterworth filter with a cutoff 

frequency of 20 Hz [70]. Three-dimensional ankle, knee, and hip angles were calculated using a 

joint coordinate system [58]. Hip joint centers were located according to Bennett et al. [59]. The 

knee joint center was the midpoint between the epicondyle markers [58], and the ankle joint 

center was the midpoint between the malleoli markers [60]. Internally applied, three-dimensional 

joint kinetics were calculated using a Newton-Euler approach [61], and projected to the joint 

coordinate system [62]. All kinetic data were normalized to body mass. Body segment masses 

were estimated from Dempster et al. [63] and segment moment of inertias were estimated from 

Hanavan [71]. All peak values occurred during the stance phase of the sidecut. A vertical ground 

reaction force threshold of 10 N indicated both initial foot contact (IC) and toe-off. For the 
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purposes of this study, only a contact time range of 50 ms prior to initial contact (pre-contact) 

and 100 ms after initial contact (post-contact) were utilized for all analyses [21, 23]. 

Raw EMG data for MVIC and motion trials were pre-amplified and filtered with a band-

pass Butterworth filter (10-350 Hz). The signal was then full wave rectified and low pass filtered 

at 5 Hz to create a linear envelope. The middle three seconds for each MVIC trial was used to 

assure a steady state activation and to identify the maximum MVIC value for each muscle for 

normalization purposes. EMG collected from each trial were expressed as a percentage of the 

EMG obtained during MVIC (%MVIC). Pre-contact (1) and post-contact (2) medial-to-lateral 

co-contraction indices of the quadriceps (VM:VL CCI). The VM:VL CCI was computed as the 

ratio of average VM activation to average VL activation.  

𝑃𝑟𝑒-𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑉𝑀: 𝑉𝐿 𝐶𝐶𝐼 =  
𝑎𝑣𝑔(𝑉𝑀50𝑚𝑠−𝐻𝑆)

𝑎𝑣𝑔(𝑉𝐿50𝑚𝑠−𝐻𝑆)
   (1) 

𝑃𝑜𝑠𝑡-𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑉𝑀: 𝑉𝐿 𝐶𝐶𝐼 =  
𝑎𝑣𝑔(𝑉𝑀𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)

𝑎𝑣𝑔(𝑉𝐿𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)
   (2) 

Likewise, pre-contact (3) and post-contact (4) quadriceps-to-hamstrings co-contraction 

indices (Q:H CCI) were computed for each trial. Q:H CCI was computed as the ratio of average 

quadriceps activation to average hamstring activation. Average quadriceps activation was 

calculated as the sum of average VM and average VL activation (5). While average hamstrings 

activation was calculated as the sum of average BF and average MH activation (6). 

𝑃𝑟𝑒-𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑄: 𝐻 𝐶𝐶𝐼 =
(𝑄50𝑚𝑠 𝑝𝑟𝑒−𝐻𝑆)

(𝐻50𝑚𝑠 𝑝𝑟𝑒−𝐻𝑆)
    (3) 

𝑃𝑜𝑠𝑡-𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑄: 𝐻 𝐶𝐶𝐼 =
(𝑄𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)

(𝐻𝐻𝑆−100𝑚𝑠 𝑝𝑜𝑠𝑡)
    (4) 

𝑄 = (𝑎𝑣𝑔𝑉𝑀 + 𝑎𝑣𝑔𝑉𝐿)     (5) 

𝐻 = (𝑎𝑣𝑔𝐵𝐹 + 𝑎𝑣𝑔𝑀𝐻)     (6) 
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The dependent variables evaluated in this study included: initial contact hip and knee 

joint kinematics in the sagittal and frontal planes, peak knee abduction angle, peak hip and knee 

joint kinetics (internal moments) in the sagittal and frontal planes, and pre-contact and post-

contact VM:VL CCI and Q:H CCI. All dependent variables were evaluated from 50 ms pre-

contact to 100 ms post-contact. For each participant, all dependent variables represented the 

mean of the five trials collected.  

STATISTICAL ANALYSIS  

Paired-samples t-tests were conducted for all kinematic and kinetic dependent variables 

between base conditions. An independent t-test between those who completed the NB condition 

first and those who completed the WB condition first was utilized to determine if an order effect 

was present between the two base conditions. Two 2x2 (condition x contact time) repeated 

measure ANOVAs were performed to examine the main effects of condition and contact time for 

EMG data, and to determine if any significant interactions were present between condition and 

contact time. The first ANOVA was performed for the VM:VL CCI, and the second was 

performed for the Q:H CCI. Abnormalities were present in one quadriceps sensor for two 

participants. Therefore, VM:VL CCIs could not be calculated for those two participants. It was 

predicted that the WB condition would increase ACL injury risk factors. However, a non –

directional hypothesis was tested because a result in either direction would be important. 

Significance for all variables was p ≤ 0.05 [64]. All statistical analyses were performed through 

SPSS (v24.0, SPSS Inc., Chicago, IL, USA). 
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RESULTS 

KINEMATICS AND KINETICS 

Dependent t-tests determined there were no significant differences between NB and WB 

conditions for sagittal (p = 0.746) and frontal (p = 0.779) initial contact knee and sagittal (p = 

0.859) and frontal (p = 0.705) initial contact hip kinematics. There was also no significant 

difference in peak knee abduction angle (p = 0.917) between the two conditions (Table 3).  

Dependent t-tests revealed a significant difference between base conditions for peak knee 

adduction moment (p = 0.036). Participants demonstrated larger peak knee adduction moments 

in the NB condition compared to the WB condition (0.51±0.46 vs. 0.31±0.29 Nm/kg, Table 4). 

No significant differences were found for peak knee extensor moment (p = 0.991). There were 

no significant differences in sagittal (p = 0.663) and frontal (p = 0.102) peak hip moments.  

There was a significant order effect for the WB peak hip abduction moment (p = 0.022) 

and the NB peak knee adduction moment (p = 0.049, Table 7). This order effect was due to one 

participant’s data. Once the participant’s data for WB hip abduction moment and NB knee 

adduction moment was removed, there was no significant order effect. It should be noted that 

while no longer significant (p = 0.075), the mean difference remained quite large (M = 0.375).  

ELECTROMYOGRAPHY  

There were no main effects in VM:VL CCIs between base condition or contact time. 

There was a significant main effect involving contact time regarding Q:H CCI, indicating 

significantly greater quadriceps activation post-contact than pre-contact (F1,7 = 18.565, p = 

0.003, Table 6).    
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DISCUSSION 

The aim of this study was to determine effects of a raised surface on lower extremity 

biomechanics and muscle activation patterns during a sidecut in female softball players. 

Participants demonstrated significantly greater peak knee adduction moments when performing 

the sidecut on the flat surface compared to the raised surface. Additionally, there were no 

differences between VM and VL activation, both pre-contact and post-contact. However, there 

was a significant difference pre- and post-contact regarding Q:H CCI, with significantly greater 

quadriceps activation post-contact than pre-contact. It is important to note that this is the first 

study to examine these two specific conditions for females, rather than comparing the same 

condition between genders.  

With respect to kinetics, our findings are similar to those previously reported for female 

knee adduction moments during sidecut movements [35, 54, 72]. Our hypothesis of the WB 

condition increasing ACL injury risk factors was not supported. It was believed that including a 

raised surface during a “high-risk” dynamic movement, such as the sidecut, would cause the 

distal end of the tibia to become more abducted, which would then work up the kinetic chain to 

result in a greater knee adduction moment to resist the increased abduction angle. This was not 

the case. It is interesting to note that while the initial contact knee abduction angles were similar 

between the NB and WB conditions (-9.52±4.29 vs. -9.60±3.91, respectively, Table 3), a 

greater adduction moment was seen for the NB condition. It has been found that a large peak 

knee adduction moment is highly correlated with a large initial contact knee abduction angle in 

sidecutting, suggesting that increased knee abduction angles result in increased knee adduction 

moments [28]. If this were the case in the current study, the peak knee adduction moments would 

be the relatively the same for both conditions due to the initial contact knee abduction angles 
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being relatively similar. A smaller peak knee adduction moment in the WB condition suggests 

that contacting a raised surface may provide a more optimal surface to perform and complete the 

sidecut, causing the GRF to potentially align more closely with the knee joint compared to 

cutting on a flat surface. 

Hanson et al. [17] and Myer et al. [66] found that females exhibit greater vastus lateralis 

activity compared to males after initial contact, suggesting a different activation pattern that may 

result in harmful ACL loading when females perform a sidecut. Increased activation of the 

lateral quadriceps increases lateral joint compression, as well as causing the tibia to become 

more abducted [66]. This abnormal neuromuscular control potentially causes an increased 

internal knee adduction moment, thus increasing the risk of ACL injury.  While not significant, it 

should be noted that females in this study exhibited slightly greater vastus medialis activity 

compared to vastus lateralis activity (Table 5). Therefore, the results of the current study suggest 

that increased ACL injury risk in female athletes performing a sidecut may not be due to 

unbalanced quadriceps activation pre- or post-contact.  

Previous research has found that females exhibit large quadriceps activation magnitudes 

during the stance phase of dynamic movements, which has been shown to directly load the ACL 

and increase injury risk [17, 32]. Participants in the current study also demonstrated large 

quadriceps activation post-contact in both base conditions (Table 6). Increased quadriceps 

activation should not be surprising, as the quadriceps stabilize the knee and prevent excessive 

flexion. The peak knee extension moments, regardless of condition, were quite large (Table 4), 

also suggesting large contributions from the quadriceps. Increased quadriceps contraction has 

been shown to increase the load on the ACL and increase the risk of ACL injury, unless 

hamstring activation is sufficient to counteract the anterior tibial draw caused by the quadriceps 
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[31]. It should be noted that our post-contact Q:H CCI values for both NB (3.72±1.41) and WB 

(3.19±1.87) (Table 6) conditions are much greater than that found by Hanson et al. (1.55±0.63) 

[17]. Differences in cutting angles between the present study and Hanson et al. (60-90 vs 60, 

respectively) may suggest different neuromuscular patterns are required to complete the sidecut.  

Before dynamic movements, such as a sidecut, lower extremity muscles must be 

activated prior to ground contact in order to build up the force required for impact [34]. 

Specifically, the hamstrings must be pre-activated so they can produce enough force to 

counteract the anterior tibial pull due to increased quadriceps activation. Hamstring activation 

has been found to significantly decrease loading on the ACL, thus decreasing ACL injury risk 

[31]. Our findings do show increased hamstring activation compared to quadriceps activation 

prior to initial contact for both NB and WB conditions (0.82±0.32, 0.84±0.53, respectively, 

Table 6). Unfortunately, these CCI values suggest that pre-contact hamstring activation may not 

be sufficient to produce a force that can compensate the large quadriceps activation produced 

post-contact, thus reducing the potential for ACL protection. These results emphasize the 

importance of neuromuscular training, which has been found to improve hamstring activation 

both prior to initial contact and after initial contact and decrease ACL loading [45].  

There are certain limitations that should be noted with the current study. Firstly, 

participants were recreational athletes who were not required to follow the same training 

protocol before data collection and had only a minimum of two years of high school softball 

experience. Thus, skill levels between participants were more than likely not the same. Secondly, 

the softball movement used in this study was performed on a gym floor and in a standard pair of 

lab shoes, rather than on a dirt field in cleats. Therefore, these findings are not completely 

applicable to game-day situations. The combination of rounding the base on a dirt field in cleats 



www.manaraa.com

 

57 

 

 
may result in movement patterns and loading that could possible increase the risk of an ACL 

injury. Further investigation is needed to assess how cleats and dirt affect ACL-causing risk 

factors. Finally, foot placement, as well as entrance and exit speeds, were also controlled to 

minimize possible variation due to speed differences or foot placement variations. In a game-like 

situation, the entrance speed may be much faster, decreasing the amount of control the athlete 

has over foot placement and increasing the chance for injury.   

CONCLUSIONS 

Our findings suggest that introducing a raised surface, with a controlled foot pattern and 

speed, may reduce the risk of ACL injury by decreasing the knee adduction moment. As there 

were no differences seen at the hip joint between both conditions, examining movement patterns 

at the ankle may provide a better explanation for why ACL injuries occur while rounding the 

base. Examining abnormal foot strikes may also provide a more in depth explanation for why 

ACL injuries in softball players while rounding a base. Quadriceps activation was significantly 

greater post-contact, and hamstring pre-activation may not be sufficient to counteract the anterior 

pull caused by quadriceps activation post-contact. Neuromuscular training to increase hamstring 

activation pre-contact could potentially decrease the load applied to the ACL and decrease the 

risk of injury while rounding a base.  
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APPENDIX A. PARTICIPANT DEMOGRAPHICS 

TABLE 1. Participant Demographics: mean ± STD. 
Height (m) Weight (kg) Age (yrs) Total Playing 

Experience (yrs) 

High School/College 

Playing Experience (yrs) 

1.70±0.04 66.99±11.46 21.5±2.07 12±3.92 4.3±1.35 
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TABLE 2. Individual Participant Demographics. 

Subject Height (m) Weight 

(kg) 

Age (yrs) LEFS  Total Playing 

Experience 

(yrs) 

High School/College 

Playing Experience 

(yrs) 

1 1.72 67.67 25 79 17 8 

2 1.68 60.89 21 80 8 4 

3 1.67 62.91 21 80 8 3 

4 1.715 62.51 21 80 15 4 

5 1.725 62.18 22 80 13 4 

6 1.645 68.83 21 80 13 5 

7 1.715 61.43 25 76 17 4 

8 1.78 96.71 19 78 8 4 

9 1.705 55.01 19 80 15 4 

10 1.68 71.79 21 77 6 3 
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APPENDIX B. CHAPTER 4 TABLES 

TABLE 3. Kinematic dependent t-test results (degrees): mean ± STD 
Variable NB WB p-value Effect Size (d) 

IC Hip Flexion Angle 38.46±7.61 38.29±5.91 0.859 0.03 

IC Hip Adduction Angle -9.14±8.95 -8.72±7.18 0.705 0.05 

IC Knee Flexion Angle -27.11±6.62 -27.48±4.61 0.746 0.07 

IC Knee Abduction Angle -1.41±5.77 -1.72±4.74 0.779 0.06 

Peak Knee Abduction Angle -9.52±4.29 -9.60±3.91 0.917 0.02 

IC: initial contact 
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TABLE 4. Kinetic dependent t-test results (Nm/kg): mean ± STD 

Variable NB WB p-value Effect Size (d) 

Peak Hip Extension Moment -2.15±0.43 -2.09±0.44 0.663 0.15 

Peak Hip Abduction Moment -1.27±0.41 -1.44±0.32 0.102 0.49 

Peak Knee Extension Moment 2.74±0.50 2.74±0.59 0.991 0.00 

Peak Knee Adduction Moment* 0.51±0.46 0.31±0.29 0.036 0.55 

*significant difference 
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TABLE 5. VM:VL CCI: mean ± STD. 

    Cond. Time Cond*Time 

  NB WB p p p  

VM:VL CCI Pre 1.21±0.80 1.09±0.48 0.391 0.133 0.289 

Post 1.31±0.41 1.29±0.52 
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TABLE 6. Q:H CCI: mean ± STD. 

    Cond. Time Cond*Time 

  NB WB p p p  

Q:H CCI Pre 0.82±0.32 0.84±0.53 0.919 0.003 0.710 

Post 3.72±1.41a 3.19±1.87a 

a: Significantly different from pre-contact 

  



www.manaraa.com

 

71 

 

 
TABLE 7. Independent t-test results: test for condition order effect. 

 Mean Difference p-value 

NB IC Hip Flexion Angle 0.92 0.862 

WB IC Hip Flexion Angle -1.12 0.783 

NB IC Hip Adduction Angle -3.19 0.603 

WB IC Hip Adduction Angle  -4.26 0.380 

NB Peak Hip Extension Moment 0.23 0.436 

WB Peak Hip Extension Moment 0.04 0.902 

NB Peak Hip Abduction Moment 0.38 0.148 

WB Peak Hip Abduction Moment 0.44 0.022 

NB IC Knee Flexion Angle 3.44 0.444 

WB IC Knee Flexion Angle 2.22 0.479 

NB IC Knee Abduction Angle -0.58 0.885 

WB IC Knee Abduction Angle 1.63 0.616 

NB Peak Knee Abduction Angle -1.48 0.614 

WB Peak Knee Abduction Angle 0.16 0.953 

NB Peak Knee Extension Moment 0.42 0.207 

WB Peak Knee Extension Moment 0.29 0.465 

NB Peak Knee Adduction Moment 0.55 0.049 

WB Peak Knee Adduction Moment 0.24 0.203+ 
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APPENDIX C. CHAPTER 4 FIGURES 

 
FIGURE 1. Experimental set-up. Tape was used to provide a range of 60 to 90 from the 

original direction of motion for the participant to perform the sidecut. Participants contacted the 

force plate, or base depending on condition, with their right foot and changed direction to the 

left. An outline of the base was provided, as well as an outline of where foot contact needed to 

occur, to ensure the same motion was used.  
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FIGURE 2. Foot placement. Foot placement was controlled during each trial. Figure 2a 

represents proper foot placement. Figures 2b-d represent improper foot placements. Trials were 

redone if foot placement was improper. 
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FIGURE 3. Kinematic ensemble curves. Comparison of hip and knee joint kinematics between 

the two base running conditions in the sagittal (upper) and frontal (lower) planes. No significant 

differences were observed between conditions.  
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FIGURE 4. Kinetic ensemble curves. Comparison of hip and knee joint kinetics between the 

two base running conditions in the sagittal (upper) and frontal (lower) planes. * indicates a 

significant difference between NB and WB conditions (p < 0.05).  

  

* 
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APPENDIX D. INFORMED CONSENT 

Informed Consent 

 

The Effect of a Raised Surface on Lower Extremity Kinematics, Kinetics, and 

Muscle Activation During a 90 Sidecut in Female Recreational Softball Players 
 

INTRODUCTION  
Participants are invited to participate in a research study conducted in the University of 

Tennessee Biomechanics Lab (HPER 136). The purpose of this study is to determine the effects 

of including a raised surface on hip, knee and ankle movements and muscle activations will 

performing a 90 sidecut, simulating rounding first base.  

 

ELIGIBILITY 

To participate in this study, you must be between the ages of 18 and 25 and be currently 

recreationally active. We define recreationally active as being physically active at least 3 days 

per week for a minimum of 30 minutes each session, and one session must include dynamic 

movements (i.e. running and cutting). You must have a minimum of 2 years high school softball 

experience. You must NOT have: undergone surgery for a lower extremity injury (e.g., ligament 

rupture, meniscus repair, bone fracture), have had an anterior cruciate ligament (ACL) injury, or 

suffered a lower extremity injury in the past six months.  

 

INFORMATION ABOUT PARTICIPANTS' INVOLVEMENT IN THE STUDY  
You will come into the Biomechanics Lab for one session, which will last approximately an hour 

and a half. You will also complete the Lower Extremity Functional Scale to ensure that you are 

qualified to participate. A score of 71/80 or lower on the scale will exclude you from the study. 

You will change into Spandex shorts and a generic t-shirt, which will be provided. Height and 

weight will be taken, followed by a 5-minute warmup jog and stretching of the legs. Wireless 

electromyography (EMG) electrodes will be placed on your right quadriceps and hamstrings. 

Maximum contraction trials will be completed, where you will maximally contract your 

quadriceps, and then hamstrings, for five seconds. This information will be used to normalize the 

EMG data collected during the motion trials.  

Reflective markers will then be placed on your right leg, which will be used to track movement 

for each condition. For the first condition, you will perform a sidecut that will be simulating 

rounding first base with a base present. In the second condition, you will perform the same route, 

but no base will be present.  You will be allowed to practice the sidecut motion until you are 

comfortable with the route and the speed at which the sidecut needs to be completed in. Five 

successful trials for each condition will then be completed. The session will conclude once these 

ten total trials are collected. 

 

RISKS  
Because a dynamic sidecut movement is being performed, there is a possibility of lower 

extremity injury. The participant will be required to warmup with a 5-minute jog and stretching 

of the lower extremity to ensure their muscles are ready for this dynamic movement. The speed 

at which this movement will be performed will be slower than a game-like situation, ensuring 
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that the participant will have control of their body throughout the sidecut. Practice runs will be 

before data collection begins until the participant feels comfortable with the route they are to 

take.  

 

Skin irritation/rash or mild burn where electrodes are placed due to skin preparation, or adhesive 

may occur. Although the likelihood of these risks are low, they are still known risks associated 

with EMG. 

 

A loss of confidentiality is also a possible risk related to your participation. Such a disclosure 

might link you to your data or your association with the study. Even when safeguards are used to 

minimize the likelihood of an unintentional disclosure, such a disclosure is still a risk associated 

with the study. 

 

BENEFITS 
There will be no direct benefits to the participant. The data collected from the participant may 

help provide a better understanding of what mechanisms are involved in ACL injuries that occur 

in softball players. The data collected may also provide athletes and coaches a better insight into 

how to improve base running to reduce the risk of ACL injuries occurring. A better 

understanding of neuromuscular characteristics during this type of movement may also lead to 

training interventions that may help reduce the prevalence of ACL injuries in softball players. 

 

CONFIDENTIALITY 
The information collected in this study will be kept confidential. Each participant will be 

identified by a given number. Data will be stored securely, both in a password-protected 

computer desktop and in a locked drawer in the Biomechanics lab. Information will be available 

only to persons conducting the study unless participants specifically give permission in writing 

to do otherwise. No reference will be made in oral or written reports which could link 

participants to the study.  

 

CONTACT INFORMATION 
If you have questions at any time about the study or the procedures, (or you experience adverse 

effects as a result of participating in this study,) you may contact the researcher, Lauren 

Schroeder, at lschroe1@vol.utk.edu or (865) 974-2091 (office number), or Dr. Joshua 

Weinhandl, PhD at jweinhan@utk.edu. If you have questions about your rights as a participant, 

you may contact the University of Tennessee IRB Compliance Officer at utkirb@utk.edu or 

(865) 974-7697.  

 

PARTICIPATION 
Your participation in this study is voluntary; you may decline to participate without penalty. If 

you decide to participate, you may withdraw from the study at any time without penalty and 

without loss of benefits to which you are otherwise entitled. Your participation may be ended by 

the investigators without regard to your consent, such as if you no longer maintain compliance 

with the study procedures. 
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CONSENT  
 

I have read the above information. I have received a copy of this form. I agree to participate in 

this study.  

 

 

Participant's Name (printed) ________________________________________________ 

 

 

Participant's Signature __________________________________ 
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APPENDIX E. LOWER EXTREMITY FUNCTIONAL SCALE 

Lower Extremity Functional Scale 

 

We are interested in knowing whether or not you are having any difficulty at all with the activities listed below.  
Please provide an honest answer for each activity. 

KEY 

0 - Extreme difficulty or unable to perform activity 
1 - Quite a bit of difficulty 
2 - Moderate difficulty 
3 - A little bit of difficulty 
4 - No difficulty E

x
tr

e
m

e
 

Q
u

it
e

 a
 b

it
 

M
o

d
e

ra
te

 

M
in

im
a
l 

N
o

n
e
 

Today, do you or would you have any difficulty at all with: 0 1 2 3 4 

1. Any of your usual work, housework or school activities ☐ ☐ ☐ ☐ ☐ 

2. Your usual hobbies, recreational or sporting activities ☐ ☐ ☐ ☐ ☐ 

3. Getting into or out of the bath ☐ ☐ ☐ ☐ ☐ 

4. Walking between rooms ☐ ☐ ☐ ☐ ☐ 

5. Putting on your shoes or socks ☐ ☐ ☐ ☐ ☐ 

6. Squatting ☐ ☐ ☐ ☐ ☐ 

7. Lifting an object, like a bag of groceries from the floor ☐ ☐ ☐ ☐ ☐ 

8. Performing light activities around your home ☐ ☐ ☐ ☐ ☐ 

9. Performing heavy activities around your home ☐ ☐ ☐ ☐ ☐ 

10. Getting into or out of a car ☐ ☐ ☐ ☐ ☐ 

11. Walking 2 blocks ☐ ☐ ☐ ☐ ☐ 

12. Walking a mile ☐ ☐ ☐ ☐ ☐ 

13. Going up or down 10 stairs (about 1 flight) ☐ ☐ ☐ ☐ ☐ 

14. Standing for 1 hour ☐ ☐ ☐ ☐ ☐ 

15. Sitting for 1 hour ☐ ☐ ☐ ☐ ☐ 

16. Running on even ground ☐ ☐ ☐ ☐ ☐ 

17. Running on uneven ground ☐ ☐ ☐ ☐ ☐ 

18. Making sharp turns while running fast ☐ ☐ ☐ ☐ ☐ 

19. Hopping ☐ ☐ ☐ ☐ ☐ 

20. Rolling over in bed ☐ ☐ ☐ ☐ ☐ 
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APPENDIX F. IRB APPROVAL LETTER 

 

December 12, 2016 

Lauren Schroeder,  

UTK - Kinesiology Recreation & Sport Studies 

 

Re:  UTK IRB-16-03387-XP 

Study Title:  The effect of a raised surface on lower extremity kinematics, kinetics, and muscle activation during a 90 degree 

sidecut in female recreational softball players 

 

Dear Lauren Schroeder: 

 

The UTK Institutional Review Board (IRB) reviewed your application for the above referenced project.  It determined that your 

application is eligible for expedited review under 45 CFR 46.110(b)(1),categories (4),  (6) and (7). The IRB has reviewed these 

materials and determined that they do comply with proper consideration for the rights and welfare of human subjects and the 

regulatory requirements for the protection of human subjects.   

 

Therefore, this letter constitutes full approval by the IRB of your application (version1.1) as submitted, including Informed 

Consent (v2.1), Recruitment Flyer (v1.2), Recruitment Email (v1.5), and the LEFS Questionnaire (v1.0). The listed documents 

have been dated and stamped IRB approved. Approval of this study will be valid from December 12, 2016 to December 11, 2017. 

 

In the event that subjects are to be recruited using solicitation materials, such as brochures, posters, web-based advertisements, 

etc., these materials must receive prior approval of the IRB.  Any revisions in the approved application must also be submitted to 

and approved by the IRB prior to implementation.  In addition, you are responsible for reporting any unanticipated serious 

adverse events or other problems involving risks to subjects or others in the manner required by the local IRB policy. 

 

Finally, re-approval of your project is required by the IRB in accord with the conditions specified above.  You may not continue 

the research study beyond the time or other limits specified unless you obtain prior written approval of the IRB. Sincerely, 

 

Colleen P. Gilrane, Ph.D. 

Chair 

Institutional Review Board | Office of Research & Engagement 
 1534 White Avenue Knoxville, TN 37996-1529 
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APPENDIX G. INDIVIDUAL RESULTS FOR SELECT VARIABLES 

TABLE 8. Individual Initial Contact Hip Kinematics: mean ± STD 

Subject 
IC Hip Flexion Angle (deg) IC Hip Adduction Angle (deg) 

NB WB NB WB 

1 39.999±2.488 41.140±3.136 -3.756±3.270 -6.575±4.288 

2 29.591±1.176 27.316±1.495 -9.126±1.783 -14.109±3.056 

3 32.873±8.344 36.236±1.910 -24.299±3.697 -19.980±1.808 

4 35.170±3.385 35.453±2.818 -14.738±4.971 -12.941±5.281 

5 46.405±2.591 42.180±1.109 0.392±3.448 -4.034±2.106 

6 43.373±3.130 40.768±4.939 -1.277±2.586 0.230±4.013 

7 37.510±2.516 37.314±3.441 -1.124±3.133 -0.470±3.434 

8 36.254±2.814 38.784±1.207 -7.292±2.060 -6.167±1.595 

9 29.796±4.089 33.906±3.234 -23.449±4.405 -18.384±2.282 

10 53.629±2.042 49.774±2.573 -6.773±5.947 -4.771±5.660 

NB: No base 

WB: With base 
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TABLE 9. Individual Initial Contact and Peak Knee Kinematics: mean ± STD 

Subject 
IC Knee Flexion Angle (deg) IC Knee Abduction Angle (deg) Peak Knee Abduction Angle (deg) 

NB WB NB WB NB WB 

1 -24.356±4.533 -25.719±8.055 -0.726±1.302 -1.296±0.630 -7.388±0.517 -6.942±1.250 

2 -30.772±1.157 -32.467±2.103 -12.735±1.770 -8.708±1.255 -19.606±1.231 -17.574±0.466 

3 -34.087±4.116 -29.622±4.653 6.040±3.331 4.051±1.460 -5.666±1.902 -7.201±1.108 

4 -26.840±7.329 -26.464±5.734 -0.250±1.962 -0.333±0.739 -9.838±3.515 -6.825±2.631 

5 -26.177±2.992 -27.429±1.147 5.154±2.429 1.166±1.140 -8.710±2.032 -9.814±2.371 

6 -35.647±3.049 -32.430±6.515 -6.785±0.669 -7.388±1.107 -13.083±2.073 -14.162±1.661 

7 -27.560±3.894 -25.691±4.768 0.874±2.248 -6.281±3.203 -6.970±0.806 -11.843±3.496 

8 -22.521±2.273 -29.478±2.707 -5.003±0.500 -1.789±1.416 -10.773±1.263 -8.236±0.593 

9 -12.399±2.683 -16.387±2.786 2.995±1.826 5.758±0.873 -4.870±1.444 -4.630±1.366 

10 -30.786±3.360 -29.091±3.948 -3.661±2.093 -2.425±1.988 -8.277±1.613 -8.745±1.457 

 

  



www.manaraa.com

 

83 

 

 
TABLE 10. Individual Peak Hip Kinetics: mean ± STD 

Subject 
Peak Hip Extension Moment (Nm/kg) Peak Hip Abduction Moment (Nm/kg) 

NB WB NB WB 

1 -2.903±8.983 -3.089±40.922 -1.959±14.398 -2.030±43.069 

2 -2.090±6.713 -1.977±23.495 -1.069±13.368 -0.885±9.487 

3 -1.944±15.225 -1.842±2.280 -0.753±12.849 -1.277±18.153 

4 -1.897±23.048 -1.638±35.018 -0.856±9.772 -1.171±5.870 

5 -1.698±26.542 -2.131±17.533 -1.357±14.838 -1.290±7.269 

6 -1.817±7.155 -2.121±24.626 -1.318±8.897 -1.666±12.706 

7 -2.053±0.578 -1.473±0.324 -1.900±0.220 -1.586±0.216 

8 -2.594±0.162 -2.007±0.172 -1.400±0.180 -1.737±0.097 

9 -1.752±0.062 -2.333±0.526 -0.901±0.242 -1.423±0.158 

10 -2.728±0.236 -2.264±0.342 -1.229±0.114 -1.350±0155 
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TABLE 11. Individual Peak Knee Kinetics: mean ± STD 

Subject 
Peak Knee Extension Moment (Nm/kg) Peak Knee Adduction Moment (Nm/kg) 

NB WB NB WB 

1 2.293±0.084 1.852±0.553 0.345±0.190 0.291±0.080 

2 2.675±0.078 2.861±0.282 1.497±0.196 1.095±0.192 

3 2.316±0.305 3.139±0.311 0.168±0.158 0.154±0.049 

4 3.450±0.661 3.535±0.256 0.846±0.167 0.234±0.166 

5 2.652±0.176 2.267±0.310 0.149±0.038 0.147±0.068 

6 3.461±0.185 3.199±0.254 0.518±0.088 0.166±0.080 

7 2.362±0.397 2.763±0.608 -0.077±0.119 0.123±0.162 

8 2.205±0.074 2.007±0.105 0.193±0.199 0.193±0.058 

9 3.385±0.258 3.378±0.118 0.794±0.271 0.422±0.100 

10 2.567±0.224 2.379±0.261 0.627±0.393 0.242±0.174 
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TABLE 12. Individual Pre-Contact and Post-Contact VM:VL CCI: mean ± STD 

Subject 
Pre-Contact VM:VL CCI (%MVIC) Post-Contact VM:VL CCI (%MVIC) 

NB WB NB WB 

1 - - - - 

2 0.829±0.275 0.775±0.247 1.562±.0.144 0.862±0.197 

3 0.589±0.150 1.080±0.283 1.419±0.465 2.171±0.182 

4 0.774±0.080 0.918±0.145 0.661±0.206 0.917±0.114 

5 2.170±0.467 2.211±0.527 1.748±0.217 1.788±0.334 

6 2.768±1.424 1.236±0.522 8.218±6.418 1.139±0.366 

7 0.834±0.208 1.009±0.184 0.828±0.128 1.026±0.150 

8 - - - - 

9 0.851±0.159 0.749±0.193 1.383±0.238 1.396±0.253 

10 1.528±0.531 1.913±0.353 1.710±0.628 1.285±0.457 

VM: vastus medialis 

VL: vastus laterlis 
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TABLE 13. Individual Pre-Contact and Post-Contact Q:H CCI: mean ± STD 

Subject 
Pre-Contact Q:H CCI (%MVIC) Post-Contact Q:H CCI (%MVIC) 

NB WB NB WB 

1 1.358±0.320 1.698±0.655 6.142±1.366 6.586±1.797 

2 1.379±0.202 1.587±0.138 5.836±1.027 6.174±1.232 

3 0.648±0.108 0.419±0.288 3.490±1.021 2.530±0.200 

4 0.987±0.133 1.462±0.369 3.877±1.301 2.896±0.551 

5 0.569±0.274 0.776±0.239 2.861±0.572 4.167±1.027 

6 0.506±0.106 0.520±0.177 3.949±2.011 1.395±0.378 

7 0.645±0.104 0.386±0.074 2.084±0.341 1.499±0.274 

8 0.609±0.333 0.401±0.095 4.163±2.143 2.867±0.601 

9 0.668±0.227 0.506±0.073 2.042±0.378 1.885±0.207 

10 0.839±0191 0.663±0.210 2.735±0.554 1.935±0.245 

Q: quadriceps 

H: hamstrings 
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